
New Design Algorithm for Low Complexity

Programmable Shifters by Integer Partition

Yujia Wang

Undergraduate student, Freshman

 Singapore University of Technology and Design (SUTD)

Singapore

yujia_wang@mymail.sutd.edu.sg

Jiajia Chen

Pillar of Engineering Product Development (EPD)

Singapore University of Technology and Design (SUTD)

Singapore

jiajia_chen@sutd.edu.sg

Abstract—Conventional programmable shifters are widely

adopted currently in many computer arithmetic manipulation

applications such as residue number system, decoders and etc.

However, it consumes a considerable amount of power and

dominates the overall complexity of the entire circuit in some

applications. More importantly, such power and circuit area

consumption become redundant when only part of the shifting

amount is required in the design. Unfortunately, the structure of

conventional programmable shifter is relatively fixed. Therefore,

a new design is needed to reduce this redundancy with partial

programmable shifters which reduces the complexity and power

consumption. As there are no existing approach in the literature

to solve the problem to our best knowledge, this paper presents

an illuminating algorithm by adopting integer partition

technique to dynamically generate the simplest numerical

combination of all the required shifting amounts. A new

structure of partial programmable shifters is designed based on

the multiplexer control signal Array. Such design algorithm has

been validated by using 8-bit programmable shifters benchmark.

The synthesis results show that the proposed design reduces the

logic complexity and dynamic power by 41.9% and 32.6% over

the conventional logarithm shifters, similarly, 67.3% and 51.6%

over the base-line multiplexer-based conventional barrel shifters.

Keywords- Programmable Shifter, digital IC Design, Digital

Signal Processing.

I. INTRODUCTION

Programmable shifters are a commonly adopted component
in many bit manipulation [1] and specific digital signal
processing circuits, such as coordinate rotation digital
computer [2], programmable finite impulse response (FIR)
filters [3], residue number system (RNS) [4] and low-density
parity-check (LDPC) decoder [5]. Existing designs [2] [3] [4]
[5] employed the conventional w-bit barrel or logarithm
shifters, which can perform shifting operations with a shifting
amount ranges from 0 to w-1 bit, The programmability is
achieved by the control signal of log2w bit. The entire circuit’s
complexity may increase dramatically due to these expensive
shifters to achieve the desired numerical computations. In
conventional structure, all shifting amounts capability are
designed independent of the actual desired shifting amounts in
specific applications, which is the primary reason for its high
complexity and power consumption. Therefore, it is crucial to
reduce the complexity and optimize the conventional structure
to design more power and area efficient programmable shifters.

There are many applications where not all shifting amounts
are required. Therefore, we propose our design to replace the
traditional full programmable shifters (FPS) by partial
programmable shifters (PPS) which can fulfill the shifting
requirements. To design a low power and low complexity PPS,
in this paper, we formulate our approach as a new algorithm
using integer partition of the required shifting amounts.

II. SHIFTING AMOUNT ARRAY EVOLUTION

A. Evolving the shifting amount array using Integer Partition

The required shifting amount of one w-bit programmable
shifter can be expressed as a shifting amount array (SAA), in
which all required shifting amount are initialized. Apparently
the number of elements inside the array should not exceed w,
which is the maximum number of shifting amounts performed
by w-bit programmable shifter. For example, an 8-bit PPS with
shifting amount 0-bit, 1-bit, 2-bit, 3-bit, 4-bit and 5-bit can be
expressed as follows:

SAA(Si)= {0, 1, 2, 3, 4, 5}; w=8 (1)

It is obvious that when all shifting amounts are present, the
conventional full programmable shifter should be adopted. On
the other hand, partial programmable shifter will be used if the
shifting amount is less than w.

To proceed with the initial SAA for simpler PPS design,
integer partition technique is adopted which is a mathematical
combinatory method to decompose an integer n as the sum of a
number of positive integers. We define a function p(n)
represents the partition of a given number n. In our method,
each shifting amount is partitioned and is expressed as a
summation of the essential shifting amounts (ESA) including
the previously generated shifting amounts Si and elements {1}
and {2} being the basic summands, which can be expressed as:

1

(S)
N

n i

i

p S C


  (2)

where N is the number of existing shifting amounts and C is the
set of {1} and {2}. Using the same example given in (1), our
proposed partition function would be:

p(S1)=1=1 p(S2)=2=2

p(S3)=3=1+2 p(S4)=4=2+2

p(S5)=5=3+2=p(S3)+2=1+2+2

mailto:yujia_wang@mymail.sutd.edu.sg

In this example, it is easy to conclude that only one 1-bit
shifting and two 2-bit shifting are required to produce all
shifting amounts stored in SAA. It should be highlighted that,
although the intermediate steps to partition one shifting amount
might be different, the ultimate result after partition should be
the same because of the addition commutative property.
Therefore, all the required shifting amounts in SAA can be
expressed as linear combinations of these essential shifting
amounts.

The evolved SAA with all shifting amounts partitioned
gives fundamental information about the architecture of the
partial programmable shifter. It is a combination of all the
partition results of the required shifting amounts:

SAA={S0+p(S1)+…+p(Sn-1)} (3)

B. Mapping the Control Bit to SAA

As one may notice, the PPS design based on the evolving
SAA has a different control signal sequence from the
conventional FPS when shifting the same amount. Therefore,
to compensate the difference, a simple method to calculate the
multiplexer selection digits in our proposed designs is
introduced below.

Suppose SAA has n elements, the shifting amount Si can be
expressed as:






 
1

0

110][]1[...]1[]0[
n

j

ni jESAnESAbESAbESAbS (4)

where the coefficient b0, b1,… are the new control signal
sequence required with b0 as the LSB. These coefficients will
be used to select the input of the multiplexers at different stage
of the proposed PPS structure. For example, if we have
ESA={1, 2, 2}, in order to shift 4-bit, the control signal would
be designed as 011 (0·ESA[0]+1·ESA[1]+1·ESA[2]). Similarly,
111 should become the control signal for shifting 5-bit
(1·ESA[0]+1·ESA[1]+1·ESA[2]).

III. PROPOSED DESIGN OF LOW COMPLEXITY PPS

An architecture of logarithm shifter is studied replacing
original 2-1 multiplexers with 2-input AND gate at some
output bit and intermediate signals, as shown in Figure 1. It
reduced the costs of a full programmable shifter. Our design
presented in this paper is developed based on this architecture
below.

Figure 1. 8-bit FPS structure

For the full programmable shifter, the evolved SAA is
{1,2,4} which can form the linear combination of any shifting
amounts between 0-bit and 7-bit.

The design process start with listing all the required shifting
amounts in the initial SAA and perform the integer partition for
every element in it. As mentioned in Section II, the partition is
to express the current shifting amount (Sn) using the previous
shifting amount (Sn-1) in the array combined with basic
partition summands. For 8-bit programmable shifter, only two
basic partition summands are needed which are {1} and {2}.
However, more basic summands must be incorporated for
programmable shifters that shift larger amount, such as 16-bit
programmable shifter, {4} is added as a basic summand.

To illustrate, we take an example that has been examined in
section II in which the required shifting amounts are
SAA={0,1,2,3,4,5} and w=8. By performing the integer partition,
we separate each shifting amount and eliminate the common
shifting amount. The SAA is obtained as: SAA={0+ p(1) + p(2)
+ p(3) + p(4) + p(5)}= {1,2,2}. With this evolved SAA, the
structure of the PPS can be developed with three control bits.
Starting from the LSB, the three control bits control 1-bit
shifting, 2-bit shifting and 2-bit shifting respectively. The
proposed design architecture is shown in Figure 2.

Figure 2. 8-bit PPS of SAA={1,2,2}

In the next stage, it is simply mapping the shifting amount
to SAA using ESA. If the element in the SAA is a summand of
a shifting amount, the corresponding control signal should be
set as 1, otherwise it should be set as 0. The control signals
correspond to the array starts from the LSB to the MSB.

In the example, we map the shifting amount {1,2,3,4,5} to
SAA as follows(LSB-MSB):

shift 0-bit→000 shift 1-bit→100 shift 2-bit→010

shift 3-bit→110 shift 4-bit→011 shift 5-bit→111

Obviously, different structures of partial programmable
shifter will be adopted based on the specific shifting amounts
required in different applications, but the overall algorithm and
procedure are the same. The pseudo code to summarize the
proposed PPS design algorithm is shown in Figure 3:

PPS(w, S){

 PPS=; //initialized PPS design

 SAA{Si}=Shifting_Amount_Array; //initialize shifting amount array
 CSA={Si: 0} (for Si in S) //initialize control signal array

 If (SAA{Si}=Set(w)) {

 PPS=design_FPS(w); // if shifting full range, adopt the FPS structure

y
14

 y
3
 y

2
 y

1
 y

0
 y

7
 y

6
 y

5
 y

4
 y

11
 y

10
 y

9
 y

8
 y

12
 y

13

b
2

b
1

b
0

x
7
 x

4
 x

3
 x

2
 x

1
 x

0

0 1

x
5
 x

6

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

b
2

y
0
 y

1
 y

2
 y

3
 y

4
 y

5
 y

6
 y

7
 y

8
 y

9
 y

10
 y

11
 y

12

x
0

b
1

b
0

0 1

x
1
 x

2
 x

3
 x

4
 x

5
 x

6
 x

7

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

}

else {

 for (Si in SAA{Si}) {

 p(Si)=integer_partition(Si, SAA{Si-1}, {2}, {1}) //perform integer

partition for every element in the array
}

SAA{S}=simplify(S0+p(S1)+…+p(Sn-1)) //eliminate the common

summands to get simplified shifting amount array.
PPS=design_PPS(A{S}) }//design partial programmable shifter

for (Si in SAA{S}) {

 Si=b0 ESA[0]+b1 ESA[1]+… / / mapping shift amount to control
signal

 CSA{Si}=map(b0b1…bi) //store control signal information}

 return PPS, CSA
}

Figure 3. Proposed PPS design algorithm

The function PPS(w, S) is to generate the structure of a w-
bit programmable shifter with a given shifting amount of S.
First of all, the program generates a shifting amount array,
SAA{Si}, with all the shifting amounts in S and examine
whether all the shifting amounts are required. If so, then
conventional logarithm shifter as shown in Figure 1 is
generated using design_FPS(w) function. Otherwise, the
proposed algorithm will use integer_partition(Si, A{Si-1}, {2},
{1}) function to perform integer partition for every shifting
amount. The function simplify(S0+p(S1)+…+p(Sn-1)) selects all
the essential shifting amounts (ESA) and updates the SAA. The
proposed design of PPS is generated using design_PPS(A{S})
based on the evolved SAA. After performing linear
combination of the required shifting amounts, map(b0b1…bi)
function maps the control bits to each shifting amount and
stores in CSA. The PPS function returns both the architecture
of the designed PPS and CSA.

IV. SYNTHESIS RESULTS AND DISCUSSION

The proposed PPS algorithm with different required

shifting amounts is implemented in Matlab. In the experiment,

six 8-bit PPS with different shifting amounts combinations

listed in Table I are designed together with two existing

conventional full programmable shifters mentioned in [4] and

[6], which are conventional logarithmic shifter (LS) and base-

line multiplexer-based conventional barrel shifters (BS). The

input is assumed of 8-bits word length which is often used in

ADC resolution. All the programmable shifter structures are

written in Verilog codes and synthesized by Synopsys Design

Compiler using STM 65nm standard cell libraries.

TABLE I. SHIFTING AMOUNTS REQUIRED FOR PPS DESIGN

Design Original SAA

Exp. 1 SAA={0,1,2,3}

Exp. 2 SAA={0,1,2,3,4,5}

Exp. 3 SAA={0,1,2,3,5,6}

Exp. 4 SAA={0,1,2,3,6,7}

Exp. 5 SAA={0,1,2,3,4,5,6}

Exp. 6 SAA={0,1,2,3,4,7}

Table II lists synthesized silicon areas in µm
2
, critical path

delays in ns as well as the total dynamic power in mW between
FPSs and PPSs designed in Table I. From Table II, the
proposed PPS reduces the silicon area on average of 41.9% and
67.3% compared with conventional logarithm shifter and
multiplexer-based conventional barrel shifter respectively. On
the other hand, there is a 22.5% and 17.1% decrease on average
of path delay compared between proposed PPS and
conventional designs respectively. Dynamic power
consumption is another important performance factor. Based
on the data obtained, the proposed PPS saves on average 32.6%
and 51.6% over conventional logarithm shifter and
multiplexer-based conventional barrel shifter. As expected, the
improvement is more significant when the shifting amounts are
fewer since more redundancy will be eliminated from the
proposed PPS architecture. To further illustrate, the area-time
(AT) complexity of all the designs, which considers the
hardware complexity and speed, are plotted in Figure 4.

Figure 4. AT complexity comparison of 8-bit programmable shifters

V. CONCLUSION

Programmable shifters are wildly used today in application-
specific digital circuits but consumes large amount of
complexity and power. In this paper, a new algorithm is
proposed to further simplify the structure of programmable
shifters when not all shifting amounts are required in the design.
By creating a Shifting Amount Array from performing integer
partition to the required shifting amounts, a new architecture of
the partial programmable shifter can be designed. In addition,
similar algorithm is used for mapping the shifting amounts
with the actual control signal inputs. This new approach has
been proven more effective with silicon area reduction of
41.9% and 67.3% over the conventional logarithm shifters and
base-line multiplexer-based conventional barrel shifters
respectively. Conversely, 32.6% and 51.6% of the total
dynamic power is saved comparing to the conventional
logarithm shifters and base-line multiplexer-based
conventional barrel shifters. In addition, this design algorithm
provides a new inspiration for the simplification of digital
circuits.

TABLE II. SYNTHESIS RESULTS FOR SILICON AREA, DELAY AND POWER FOR 8-BIT PPS COMPARING WITH CONVENTIONAL FPS

Design

Synthesis Results and Power Simulation Results

Silicon Area

(µm2)

Reduced Area over

BS / LS

Path Delay

(ns)

Reduced Delay over

BS / LS

Total Dynamic

Power (mW)

Reduced Power over

BS / LS

BS 1565.12

0.1243

5.3907

LS 857.5

0.133

3.8694

PPS

Exp. 1 142.5 90.8% / 83.4% 0.0686 44.8% / 48.4% 1.0021 81.4% / 74.1%

Exp. 2 568.35 63.7% / 33.7% 0.1138 8.4% / 14.4% 2.5897 52.0% / 33.1%

Exp. 3 619.79 60.4% / 27.7% 0.1004 19.2% / 24.5% 3.3065 38.7% / 14.6%

Exp. 4 562.12 64.1% / 34.4% 0.1133 8.9% / 14.8% 2.7285 49.4% / 29.5%

Exp. 5 618.79 60.5% / 27.8% 0.1090 12.3% / 18.1% 3.3065 38.7% / 14.6%

Exp. 6 562.12 64.1% / 34.4% 0.1133 8.9% / 14.8% 2.7285 49.4% / 29.5%

Average: Average Reduced

Area over:

BS: 67.3%

LS: 41.9%

Average Reduced

Delay over:

BS: 17.1%

LS: 22.5%

Average Reduced

Power over:

BS: 51.6%

LS: 32.6%

ACKNOWLEDGMENT

This research and the material reported in this document are
supported by the SUTD-MIT International Design Centre (IDC)
at Singapore University of Technology and Design (SUTD).
We also gratefully acknowledge the support and contribution
from Ms. Juan Zhao and Mr. Sachin Kumar to this work.

REFERENCES

[1] Y. Hilewite and R. B. Lee, “A new basis for shifters in general-purpose
processors for existing and advanced bit manipulations,” IEEE Trans.
on Computers, vol. 58, no. 8, pp. 1035–1048, Aug. 2009.

[2] L.Vachhani, K. Sridharan and P. K. Meher, “Efficient CORDIC
algorithms and architectures for low area and high throughput
implementation,” IEEE Transactions on Circuits and Systems II, vol. 56,
no. 1, pp. 61–65, Jan. 2009.

[3] J. Chen, C. H. Chang, F. Feng, W. Ding and J. Ding, “Novel Design
Algorithm for Low Complexity Programmable FIR Filters Based on
Extended Double Base Number System,” IEEE Transactions on Circuits
and Systems I, vol. 62, no. 1, pp. 224–233, Jan. 2015.

[4] J. Y. S. Low and C. H. Chang, “A VLSI efficient programmable power-
of-two scaler for {2n−1,2n, 2n+1} RNS,” IEEE Transactions on Circuits
and Systems I, vol. 59, no. 12, pp. 2911–2919, Dec. 2012.

[5] D. Oh and K. K. Parhi, “Low-complexity switch netwlrk for
reconfigurable LDPC decoders,” IEEE Trans. on VLSI Systems, vol. 18,
no. 1, pp. 85–94, Jan. 2010.

[6] R. Rajalakshmi and P. A. Priya, “Design and analysis of a 4-bit low
power universial barrel-shifter in 16nm FINFET technology,” IEEE
Inter. Conf. Advanced Communication Control and Computing
Technologies, pp. 527-532, Tasilnadu, India, May 2014.

