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Abstract—Advances in neuroscience have enabled the rapid 

development of electronics for prostheses. The neural signals 

can be detected and amplified with Multi-Electrode Arrays 

(MEAs) of the order of 1000; and neural amplifiers, 

respectively. Modern day recordings use single probes for 

multiple neuron activity, as studying isolated cells does not 

present the real-life scenario [1]. The issue of accurately 

identifying neural or ‘spike’ signals with their corresponding 

characteristic neurons is known as ‘Spike Sorting’, and it 

consists of a two-step process: Feature Extraction and 

Clustering. The motivation behind this research is to propose 

novel bio-inspired feature extraction for the purpose of spike 

sorting. First, results were matched to papers that proved that 

derivative-based features performed better in terms of noise 

and error as compared to the established Principal Component 

Analysis (PCA). Next, a formal spiky neuron model, the 

Integrate-and-Fire neuron was functionally modeled on 

software (MATLAB) and implemented at the transistor level 

on Spice (CADENCE). Output firing rates, or ‘Gains’ of both 

were matched and new features were proposed from the 

outputs of the spiky neuron model. These features were 

optimized for error and showed promising results for future 

research in the area. 
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I. BACKGROUND AND MOTIVATION 

 
Spike Sorting addresses the problem of grouping neural (or 
‘spike’ signals) into clusters based on the similarity of their 
shapes. Principally, every neuron fires spikes of a particular 
shape, and so the resulting clusters correspond to the 
activity of different putative neurons [1].  

Intricate brain processes responsible for communication 
between the brain and the prosthetic are defined by the 
activity of large neural populations. Studying a single, 
isolated cell would give a myopic view of the whole picture 
[2, 3]. This is the rationale behind Spike Sorting. Spike 
sorting consists of two main components: Feature 
Extraction and Classification. In Feature Extraction, a few 
features offering best cluster distinction and noise immunity 

are selected from a dataspace of dimension ‘m’, thus 
reducing the dimensionality considerably. Classification 
focuses on optimal clustering algorithms that are preferably 
unsupervised, so as to save on delays and minimize user 
intervention [4]. With increased scaling of devices 
nowadays, effective data compression; i.e. extracting useful 
features from limited data, is crucial. A lower sampling rate 
can be traded off to achieve higher data compression, 
especially for a limited power budget. The motivation 
behind this research is self-designed, bio-inspired feature 
extraction based on compressed data information.  

II. FEATURE EXTRACTION AND PATTERN 

CLASSIFICATION; ALGORITHMIC DEVELOPMENT 

 

A. Scope and Methodology 

 
A webpage “Waveclus” [5] introduces new methods for 
feature extraction. The data provided contains spike 
potentials recorded from the brain waves of a monkey. It is 
arranged in varying levels of difficulty; difficulty being 
inversely proportional to the standard deviation of the added 
noise, or inverse of signal-to-noise ratio [6]. A superior 
clustering method, knows as Super Paramagnetic Clustering 
(SPC) has been used to label the various spike classes, and 
this is accurate enough to be considered as the ‘ground 
truth’ [1, 5]. 
 
This section refers to a research paper [6] in accordance 
with which, two different features are used for clustering the 
spikes using the unsupervised K-Means method. The 
deviations between the classifier results and ‘spike_class’ 
are reflected as error. This error, known as classification 
error, is then compared for the two methods/features; 
namely the newer derivative-based feature: First and Second 
Derivative Extrema (FSDE), and the common standard 
Principal Component Analysis (PCA). It is to be noted that 
two cases are considered: same feature space for both 
methods, and a higher feature space for PCA. 
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B. Results and Discussion 

 

Out of all the datasets, two have been chosen to best 

represent the results discussed as follows: 

 

1) Same feature space: m=3 for FSDE and PCA 

 
 

 
Figure 1:Dataset 2, “Easy 2” 

 

 
Figure 2: Dataset 4, “Difficult 2” 

 

 

In general, error is seen to increase with an increase in the 

level of difficulty as expected, since it gets increasingly 

more difficult to distinguish between the three clusters. 

When m=3 for both PCA and FSDE, FSDE performs better 

than PCA for higher difficulty, as can be deduced from 

Figures 1 and 2.  
 

2) Higher feature space: m=10 for PCA, 3 for FSDE  

 

 

 
Figure 3:Dataset 2, “Easy 2” 

 

 
Figure 4: Dataset 4, “Difficult 2” 

 

When m=10 for PCA and m=3 for FSDE, PCA performs 

better in terms of error.  

Therefore, a trade-off exists between performance and data 

compression. A point in favor of FSDE is that it displays a 

far better noise immunity than PCA, which is seen to have 

steep slopes in almost all cases. Moreover, since real-world 

problems have higher levels of difficulty in segregating the 

data into clusters, FSDE seems promising Therefore, PCA is 

not necessarily the optimal method. Other methods such as 

FSDE, can give lower error and better noise immunity after 

classification. 

III. PULSE-BASED FEATURE EXTRACTION; SOFTWARE 

SIMULATION 

 

The Integrate-and-Fire neuron closely models the working 

of a formal spiking neuron. A block diagram depicting the 

simplified working is shown in Fig. 5. The incoming spike 

(action potential) is first converted to a current ‘Iinput’ by a 

capacitor, say ‘Compcap’ Then, ‘Iinput’ will simply be: 

 

                     𝐼𝑖𝑛𝑝𝑢𝑡 = 𝐶𝑜𝑚𝑝𝑐𝑎𝑝  𝑥  
𝑑𝑉𝑆𝑝𝑖𝑘𝑒

𝑑𝑡
               (1) 

 
                         

This current charges the capacitor C (Fig. 5) till the voltage 

across it, ‘VC’ equals the threshold voltage ‘VTH’. Initially 

the comparator output is LOW, and the NMOS transistor 

M1 is OFF. As soon as VC equals VTH, the comparator 

output goes to a HIGH and the NMOS is turned ON. This 

results in the capacitor being discharged, and VC plunging to 

the value of the reset voltage [7]. The process involves a 

conversion from voltage to current and current back to 

voltage. 
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Figure 5: Block diagram of Integrate-and-Fire neuron, waveforms of VC 

and VOUT 

 

A. Methodology 

 
The Integrate-and-Fire neuron can be entirely programmed 
in MATLAB, based on the working that has been described 

above. Additionally, the current Iinput is split into positive 

(‘pos’) and negative (‘neg’) halves before being fed 
independently to the neuron model. This is due to the 
requirements of the advanced architecture that can then 
process the positive and negative pulse train outputs 

separately. The corresponding pulse outputs, ‘possp’ and 

‘negsp’ obtained from the positive and negative halves 
respectively, can be seen in Fig. 6. Note that this represents 
the waveform for one spike. 
 

 
Figure 6: Positive (red) and negative (green) pulse outputs from Integrate-

and-Fire neuron for given Iinput 

 
 

B. Proposed Feature 

 

The width of a typical spike signal is approximately 2 ms. 

The total number of ‘dt’ time (and data) points defining 

Iinput is 160, where dt = 12.5 µs. Grouping these into 

samples of 10 ‘dt’ points each, there would be 16 such 

samples. Then, it is possible to define vectors PNsp and NNsp 

that count the number of pulses present in each sample, for 

pos and neg respectively. So, PNsp and NNsp will be vectors 

of M x 16 each, where M is the number of Spikes given in 

the data. To illustrate this, the vectors PNsp and NNsp for a 

certain spike action potential are: 

 

PNsp:  0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 

NNsp:  0 0 0 0 0 0 0 2 3 0 0 3 1 0 0 0 

 
The number of pulses generated for the first nine samples or 

1.125 ms (90 x dt = 1.125ms) are ‘0’, for PNsp. The 6th 

sample however, contains 5 pulses. Looking only at the 

vector PNsp, it can be easily inferred that the sixth sample is 

the place of the maxima, for the positive half of Iinput. A 

similar reasoning can be extended towards NNsp. This 

information can be used to differentiate between the three 

types of neuron clusters. A new feature ‘Feature1’ is 

defined, which is a concatenation of , PNsp and NNsp.  To 

examine the degree to which Feature1 offers ‘separateness’ 

between the three neuron clusters, PCA was performed on 

it, and the resultant scatter plot is seen in Fig. 7. The error 

can be calculated using K-Means, to be 0.0028. 

 

 
Figure 7: Scatter plot showing clustering accuarcy of ‘Feature1’ 

 

IV. PULSE-BASED FEATURE EXTRACTION; SPICE 

SIMULATION 

 

A. Methodology 

 
The Integrate-and-Fire neuron model can also be 
implemented in the analog domain, on CADENCE. The 
objective is to obtain results that are similar to those 
obtained in the software simulations. For the analog circuit, 
the task of counting the pulses every 125 µs is performed by 
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a Counter, and the task of storing the data is performed by 
the Shift Register network.  
 
An overall schematic of the circuit can be seen in Fig. 8. It 
consists of functional blocks, namely the input ‘spike 
voltage’ source, class B amplifier, Integrate-and-Fire circuit, 
Counter, and Shift Register Network. The circuit works 
exactly like the software implementation described 
previously: The voltage spike is first converted to a current 

Iinput, which is separated into positive and negative by a 

Class B amplifier.  
 
The segregated currents are then fed independently to 
Integrate-and-Fire neuron circuits. The pulse outputs from 
both positive and negative currents then go through a 
counter that counts the number of positive or negative 
pulses every 125 µs. This ‘refresh’ function is controlled by 
the ‘Reset’ signal (Fig.8). The 4-bit counter outputs then go 
through the Shift Register Network, and the final outputs 
start appearing after 2ms. Note that though the Shift 
registers have to be synchronous with the counter ‘Reset’, it 
is imperative to reset the counters after a certain delay, 
implemented in the form of inverters (Fig.8). This is in 
accordance with the regular setup time constraints.  
 

 
Figure 8: Feature-Extraction Circuit schematic implemented on CADENCE 

 

B. Results 

 

The pulse outputs from the Integrate-and-Fire neuron for the 

positive and negative halves of current I_input can be 

observed in Fig.9. Fig.10 shows the counter outputs 

obtained for the positive half of Iinput, ‘pos’. The 10th sample 

(1.125-1.250 µs) counts the number of pulses as ‘8’ and the 

11th sample (1.250-1.375 µs) counts ‘9’.  

 

Figure 9: Spice simulation showing Spike (green), Reset/ Clear_n (pink), 

pulse outputs from positive (cyan) and negative (violet) Iinput. 
 

 

 

 
Figure 10: Counter counting pulse outputs for positive Iinput. Between 2 

successive resets (1.125µs -1.250µs), the number of positive pulse outputs 
are ‘8’. This can be verified by the counter reading: [Q3 Q2 Q1 Q0] = [1 0 

0 0] 

 

V. MATCHING GAINS FROM SOFTWARE AND SPICE 

SIMULATIONS 

 

A. Results and Discussion 

 

The visible similarity between the pulse outputs obtained 

from the software and spice simulations (Fig. 11) can be 

proved quantitatively, by calculating and comparing the 

firing rate of pulse outputs, or Gain ‘G’ for each.  This 

realization is extremely useful, since the feature proposed 

programmatically in Section III can now be implemented in 

the analog domain using Spice.  

 



 
Figure 11: Comparing pulse outputs from software simulations (MATLAB) 

with Spice simulations (CADENCE) 
 

 

For the MATLAB implementation, G is calculated by 

polyfitting the Pulse Frequency vs ‘Iinput’ curve, where Iinput 

is varied by performing a DC sweep (Fig. 12). This value is 

calculated to be 6.9465 x 1012 Hz/A. For the analog circuit, 

Gain ‘G’ of the Integrate-and-Fire neuron is defined as:   

                    

         𝐺𝑎𝑖𝑛 =  
𝐹𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑢𝑙𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝐼𝑖𝑛𝑝𝑢𝑡
           

(2) 

 

If a ramp function is used as the spike input voltage, the 

resultant Iinput is constant, and the pulse outputs obtained 

are separated evenly. The inverse of this ‘time period’ 

would then give PF (Fig.13). G can be calculated to be 4.072 

x 1012 Hz/A. 
 

 
Figure 12: Calculating Gain of Integrate-and-Fire neuron model from slope 

of ‘polyfit’ PF vs Iinput 

 
Figure 13: Spice simulation showing ramp function (green), resultant 

constant current generated I_input (pink) and the pulse outputs from 
Integrate-and-Fire circuit (cyan). 

 

CONCLUSION 

The idea of using electronics to communicate information 

between brain cells and prosthetics has gained popularity in 

recent years. Future research in this area relies heavily on 

the accuracy of identification of a neural signal with its 

source neuron. Certain problems still persist: overlapping 

spikes, supervised classification methods etc. The biggest 

issue is the lack of availability of a ‘ground truth’: the 

actual number of total neurons, and the absolute correct 

identities of neural signals. For the purpose of classification, 

distinguishing between shapes of spike potentials belonging 

to different clusters may prove to be very useful; i.e. the 

maxima and minima, the height and width of the peaks and 

so on. This idea was taken up by some researchers who 

thought of several features, most of them based on first and 

second derivatives of the Spike Action Potentials. The 

classification error obtained by using these methods was 

compared with that from a reference standard method, PCA. 

The results showed that for datasets of higher difficulty 

levels, derivative-based features showed better performance 

as compared to PCA [6]. This research also proved the same 

and reiterated the theory proposed by the paper. A feature-

extraction based Circuit was designed to implement a novel 

bio-inspired feature proposed by the authors. This was done 

in two ways: first, the circuit was programmed functionally 

on software (MATLAB), and then the analog circuit was 

designed at the component level on Spice (CADENCE). In 

both the implementations, the input Spike potentials used 

produced consistent results, thus allowing for the successful 

completion of the project. 
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