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1. Abstract

The rook polynomial is a powerful tool in
the study of restricted permutations. The
bishop polynomial is a subset of the rook
polynomial on irregular boards. While
the rook polynomial for regular boards
is well-established, a generalisation for
the bishop polynomial remains unclear
(at the point of the study). This study
hence presents an original generalisation,
the Qu-Sim theorem, for the bishop poly-
nomial for all square boards.

2. Introduction

The rook polynomial is a powerful tool
in the theory of restricted permutations.
[1] Especially in recent years, the study
of rook polynomial branches from the ini-
tial focus on the enumeration of restricted
permutations to many others, with ap-
plications in graph theory, enumeration
of matrices, chromatic theory and more.
In comparison, the bishop polynomial, a
special case of the rook polynomial, has
not been as well- established. As such,
this paper hopes to present an original
generalisation of the bishop polynomial
for square boards to help raise the thresh-
old of research on bishop polynomials.

3. Preliminaries

(Note that a glossary of notations is avail-
able at the Appendix for easy of refer-
ence.)

The rook polynomial is a generating poly-
nomial of the number of arrangements of

k non-attacking rooks on an m×n chess-
board. A rook is a chess piece that moves
vertically and horizontally on the chess-
board. As such, non-attacking rooks must
be arranged such that no rook are placed
in the same row or column.

Let B denote a generalised board (which
may be irregular in shape), whereas Bm×n
denote a rectangular (regular) board with
m rows and n columns. In this paper,
we define the term k-rook placement as
the number of arrangements of k non-
attacking rooks on a board B whereby or-
der does not matter.

The following are theorems and defini-
tions previously derived by other papers.
Proof will not be provided here but can be
easily found in the references.

Definition 3.1 The rook polynomial of
a board B is the generating function:
RB(x) =

∑∞
k=0 rk(B)xk, where rk(B)

denotes the k-rook placement on B.

Lemma 3.1 rk(Bm×n) =
(
m
k

)(
n
k

)
k!

where k ≥ m,n.

Theorem 3.2 The rook polynomial of
Bm×n is defined as: Rm,n(x) =∑min(m,n)

k=0

(
m
k

)(
n
k

)
k! xk while a 0-rook

placement on any board is always 1.

Definition 3.2 Two boards, A and B, are
said to be rook equivalent if RA(x) =
RB(x). A sufficient (while not always
necessary) condition of rook equivalence
is that B can be obtained from A by per-
mutation of rows and columns, meaning
interchanging rows and columns will not
alter the k-rook placements of a board.[1]

Theorem 3.3 Component Theorem Let B
be a board consisting of k disjoint sub-
boards, B1, B2, B3. . .Bk. Then RB(x) =



Πk
i=1RBk

(x), where disjoint sub-boards
are defined as boards made up of cells
from the original board B not sharing
common rows/columns.[2]

Definition 3.3 Let Bm×n be an m×n
board, and S an s× t block of Bm×n. For
0 ≤ j ≤ min(s, t), let BS,j denote the
board obtained by deleting

• j of the s rows covered by S
• j of the t columns covered by S
• all the cells of S

BS,j is known as the jth inclusion board
of Bm×n relative to S. Since rows and
columns involved are identical except on
S, which are deleted, BS,j is well-defined.
[1]

Theorem 3.4 Block Decomposition The-
orem [1]

R(B) =

min (s,t)∑
j=0

rk(S)xjR(BS,j)

(Efficiency of the theorem is greatly af-
fected by the choice of cell/block to de-
compose.)

Example: In Figure 1, let S be the 2 × 1
shaded block. Then by Theorem 2.4,
the rook polynomial of un-decomposed
board B is r0(S)R(Bs,0) + r1(S)R(Bs,1)
as shown.

Example of Application of Block Decomposition

4. Special case of Rook Polynomial:
2 × n boards

This special case of the Rook Polynomial
will be used intensively in our proof of
our main theorems presented, accompa-
nied with Theorem 2.4. As such, it is
instructive to go through the general for-
mula of the rook polynomial for n × 2
boards.

Corollary 4.0.1 The rook polynomial for
n × 2 boards is as follows: Rn×2(x) =
1+(n×2)x+(n)(n−1)x2 where Rn×2(x)
denotes the rook polynomial for n × 2
boards.

Proof 4.0.1 : Since there is always 1 way
to arrange 0 rooks on any board. Con-
sider all possible n × 2 boards, using
Theorem 2.2 there is

(
n
1

)(
2
1

)
= 2n ways

to arrange 1 non-attacking rook; and(
n
2

)(
2
2

)
2! = (n)(n − 1) ways to arrange

2 non-attacking rooks.

5. Introduction to the Bishop
Polynomial

A bishop moves only diagonally without
restriction in the distance of each move.

Definition 5.1 Here, the bishop poly-
nomial is the generating function of
the number of arrangements of k non-
attacking bishops (k-bishop placement)
on a m × n board: Bm×n(x) =∑

k=0 bkx
k where bk denotes the kth co-

efficient of the bishop polynomial.

While both bishops and rooks move in
straight lines, they differ in the direction
of movement. However, the movement of
the two can be related through a 45o ro-
tation of the board. Tracing out the path
of a bishop after a 45o rotation, gives the
path of a rook piece. In Figure 2, the
bishop polynomial of board A is the rook
polynomial of board B.

Tilting board 45o converts bishop move (in A) to a rook

one (in B)
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Given that a rook moves only vertically or
horizontally, it can only occupy squares
of the same colour (in board B above).
Thus the white board (consisting of white
cells) and black board (consisting of black
cells) are disjoint sub-boards of the over-
all board B. In particular, for even boards
B2n×2n, note that R(Bwhite) = R(Bblack).
By Theorem 2.3, R(B) = R(Bwhite) ×
R(Bblack) for all square board B.

6. The Qu-Sim Theorem

6.1. Definitions

Definition 6.1 Square even boards,
B2n×2n can be decomposed into two rook
equivalent sub-boards, each denoted as
E board or E2n×2n. Bishop polynomial
of E2n×2n is expressed as E2n×2n(x).
Based on Theorem 2.3, B2n×2n(x) =
(E2n×2n(x))2

Definition 6.2 Square odd boards,
B(2n+1)×(2n+1) can be broken down into
two sub-boards: one with even num-
ber of cells – denoted as P board or
P(2n+1)×(2n+1) - and the other with an odd
number of cells – denoted as O board or
O(2n+1)×(2n+1).

Bishop polynomial of the P and O
boards are expressed as P(2n+1)×(2n+1)(x)
and O(2n+1)×(2n+1)(x). By Theorem 2.3,
B(2n+1)×(2n+1)(x) = P(2n+1)×(2n+1)(x) ×
O(2n+1)×(2n+1)(x)

Decomposition of B2n×2n and B(2n+1)×(2n+1)

6.2. Qu-Sim Theorem for Even Boards

Theorem 6.1 B2n×2n(x) = (
∑2n−3

k=0

xk bk(E(2n−2)×(2n−2)(x))×R2×(2n−k−1)(x))2

where n ≥ 2 and E2×2(x) = 1+2x. Note
that bk(B(x)) refers to the kth bishop
coefficient of bishop polynomial of sub-
board E(x) and Rm×n(x) refers to the
rook polynomial of regular board Bm×n.

Proof 6.1.1 Transforming the first few
even boards (Figure 4) gives us a gen-
eral idea of the pattern: The sub-boards
E(2n+2)×(2n+2) always adds a 2×(2n+1)
block to the former E sub-board E2n×2n.
Hence, as the consecutive boards are
closely related, a recursive function can
be used to calculate the bishop polyno-
mial for each board.

First few E boards (subboard of the even board

B2n×2n)

Using Theorem 2.4, we see that for
E2n×2n the following relations hold if
we choose to decompose the previous
E(2n−2)×(2n−2) board: (Refer to Figure 5
for diagrammatic representation of rela-
tions.)

Block Decomposition of the E2n×2n board) (which is

the board on the LHS of equation)

Representing Figure 5 mathematically,

B2n×2n(x) = b0(E2n−2)×(2n−2)(x)) ×
R(2n−1)×2(x) + b1(E(2n−2)×(2n−2)(x)) ×
R(2n−2)×2(x) + b2(E(2n−2)×(2n−2)(x))×
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R(2n−4)×2(x) x2 + . . . +
b2n−2(E(2n−2)×(2n−2)(x))×R(3×2)(x) x2n−2 +
b2n−3(E(2n−2)×(2n−2)(x))×R2×2(x) x2n−3

which is equivalent to the Qu-Sim Theo-
rem presented at the start of this section.

6.2.1. Defining the Bishop Coefficient
of E Boards

Definition 6.3 The kth bishop coefficient
of the E sub-board is defined as follows:

bk(E2n×2n(x)) = bk(E(2n−2)×(2n−2)(x))+
2(2n−k)·bk−1(E(2n−2)×(2n−2)(x))+(2n−
k + 1)(2n− k) · bk−2(E(2n−2)×(2n−2)(x))

Where n ≥ 2, 2 ≤ k ≤ 2n− 1, n, k ∈ Z
and b1(E2×2) = 2. Note for all k >
2n − 1, bk(E2n×2n(x)) = 0; and for all
k > 2n− 3, bk(E(2n−2)×(2n−2)(x)) = 0.

The explicit forms of b0, b1, b2 for all
square boards (even and odd) are also
found and presented in Section 6 of the
paper.

Proof 6.1.2 First let’s decompose the
board E2n×2n into its sub-board
E(2n−2)×(2n−2) and the additional part
which is a 2×(2n−1) rectangular board.
We can place 0, 1 or 2 bishops on the
2× (2n− 1) board, with a corresponding
k, k−1 or k−2 bishops on E(2n−2)×(2n−2),
yielding in total three cases. Given that
in order for the bishops on the additional
board to be non-attacking in relation to
the previous ones, there are 1, 2n− k and
(2n − k + 1)(2n − k) ways respectively.
Then, it follows from Theorem 2.4 (De-
composition Theorem) that:

bk(E2n×2n(x)) = bk(E(2n−2)×(2n−2)(x))+
2(2n−k)·bk−1(E(2n−2)×(2n−2)(x))+(2n−
k + 1)(2n− k) · bk−2(E(2n−2)×(2n−2)(x))
as above.

6.3. Qu-Sim Theorem for Odd Boards

Theorem 6.2 B(2n+1)×(2n+1)(x) =[∑2n−2
k=0 xk bk(P(2n−1)×(2n−1)(x)) ×

R2×(2n−k)(x)
][∑2n−1

k=0 xk bk(O2n×2n(x))×
R1×(2n−k+1)(x)

]
where n ≥ 2. Note that bk(B(x)) refers to
the kth bishop coefficient of some bishop
polynomial of sub-boards P (x) or O(x).

6.3.1. Defining the Bishop Coefficient
of P Boards

Definition 6.4 The kth bishop coefficient
of the P sub-board is defined as follows:

bk(P(2n−1)×(2n−1)(x)) = bk(P(2n−3)×(2n−3)(x))+
2(2n− k− 1) · bk−1(P(2n−3)×(2n−3)(x)) +
(2n−k−1)(2n−k)·bk−2(E(2n−3)×(2n−3)(x))

where n ≥ 3, 2 ≤ k ≤ 2n −
3, k ∈ Z and b1(P1×1) = 1, b1(P3×3) =
4, b2(P3×3) = 2. Note that b0 =
1, b1(P(2n−1)×(2n−1)(x)) = 2 × n × (n −
1) for n ≥ 2, and for all k > 2n −
2, bk(P(2n−1)×(2n−1)(x)) = 0.

The proof of Theorem 5.2 and Definition
5.4 are included in the Appendix. Note a
table of bishop polynomials up to 8 × 8
boards is available in the Appendix.

7. Explicit Forms - Special cases of
bk(Bn×n)

By definition, b0 = 1 for all boards. It
is also clear that b1 = n2 for all square
boards Bn×n) since there are n2 cells in
total and with only 1 bishop, there are no
restrictions on the placement of bishop.

Lemma 7.1 Closed Form of b2:
b2(Bn×n) = 1

6
n(n− 1)(3n2 − n + 2).

The proof of the Lemma is also included
in the Appendix of the report.

8. Application and Conclusion
The rook polynomial is pertinent in var-
ious fields of combinatorics, including
counting problems with restrictions and
graph theory (matching polynomials).
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Matching polynomial, in particular, has
known applications in Chemistry. For in-
stance, the Hosoya Z topological index
correlates to the boiling points of alkanes
and is calculated to be the sum of coeffi-
cients of the matching polynomial of the
graph of the alkane molecule. The rook
polynomial is particularly useful when
dealing with bipartite graphs which can
be modelled like boards in the rook prob-
lem.

The rook polynomial, when paired with
the Inclusion-Exclusion Theorem, can
solve real-life counting problems such as
timetable pairing and allocation of re-
sources.

For example: A restaurant provides these
set meals: Chicken(C), Vegetable(V),
Spicy and Steak. Adam(A) doesn’t eat
chicken and vegetable; Ben(B) doesn’t
eat spicy food; Carrie(C) doesn’t eat
chicken; and David(D) doesn’t eat beef.
In how many ways can Mum order a dif-
ferent set meal for each of the children
such that all end up satisfied?

On the left is rook-equivalent board (to that of the right)

after permutation of rows and columns to obtain 3 dis-

joint sub-boards.

In Figure 6, the shaded squares refer to
the pairing of children to set meal that
will not work. Here, the rook polyno-
mial comes in handy since the number
of ways to satisfy the children is just the
complement of the rook polynomial of the
shaded set of cells.

Additionally, for incomplete square n ×
n boards (i.e. rooks cannot be placed
on subsets of the board), the kth- rook
placement is equivalent to computing the
permanent of a 0-1 matrix. Our study
of bishop polynomial (an irregular rook

problem) may shed more light in this
field.

The bishop polynomial also has practical
and theoretical application:

Given a room with diagonal corridors,
how many ways can k robots be arranged
such that their arrangement has no over-
laps (no 2 robots are placed in same diag-
onal)? Problems like these can be solved
using the bishop polynomial, which can
help optimise real-life guarding system.

In addition, the bishop polynomial can be
related to theoretical fields such as chro-
matic polynomial, determinants as well as
discordant permutations (derangement).
These applications are discussed further
in the paper by Wahid (1999). [3]

The bishop polynomial, an irregularity
of rook polynomial, is not easy to anal-
yse combinatorially. Given the better-
established rook polynomial, the differ-
ence in movement of pieces can be re-
solved by rotation of the board. The prob-
lem is then reduced to solving for the rook
polynomial of an irregular board. In our
report, patterns of shapes of sub-boards
and of successive boards are used for gen-
erating the Qu-Sim Theorem, an original
generalisation of the bishop polynomial.

We endeavour to expand our project in the
following ways: First, to define the the
bishop polynomial without recurrence,
instead with an explicit. In other words,
we hope to find a closed-form solution for
the bishop polynomial.

Second, we hope to expand the gener-
alisation of the bishop polynomial using
the method previously discussed on other
board such as rectangular or triangular
boards.

Lastly, we can investigate the bishop
polynomial of 3-dimensional boards as
the rook polynomial of 3D boards are al-
ready well-established.
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9. Appendix

9.1. Proof of Qu-Sim Theorem for Odd Board

Figure 1. First few P boards(upper) and O boards(lower)

Proof 9.0.1 Transforming the first few odd boards gives us a general idea of the pattern:
For P boards, the sub-boards P(2n+1)×(2n+1) always adds a 2 × 2n block to the former
P sub-board P(2n−1)×(2n−1). For O boards, the sub-boards O(2n+1)×(2n+1) always adds a
1 × n block to sub-board E2n×2n. A recursive function function can thus be formed for
both P and O boards.

Using Theorem 2.4, the following holds if we decompose P(2n+1)×(2n+1) into its previous
boards.

Representing Figure 7 mathematically,

P(2n+1)×(2n+1) = 1 × R2×2n(x) + b1(P(2n−1)×(2n−1)(x)) × x × R2×(2n−1)(x) +
b2(P(2n−1)×(2n−1)(x)) × x2 × R2×(2n−1)(x) + ...... + b2n−3(P(2n−1)×(2n−1)(x)) × x(2n −
3)×R2×3(x) + b2n−2(P(2n−1)×(2n−1)(x))× x(2n− 2)×R2×2(x)

which is equivalent to P(2n+1)×(2n+1)(x) =
[∑2n−2

k=0 xk bk(P(2n−1)×(2n−1)(x)) ×

Figure 2. Block Decomposition of P(2n+1)×(2n+1)
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R2×(2n−k)(x)
]

(n, k ∈ Z, n ≥ 2)

Similarly, O(2n+1)×(2n+1)(x) =
[∑2n−1

k=0 xk bk(E(2n)×(2n)(x)) × R2×(2n−k+1)(x)
]

(n, k ∈
Z, n ≥ 2)

9.2. Definition of P board coefficient
Substituting (2n− 1) for all 2n in section 5.2.1, we get:

bk(P(2n−1)×(2n−1)(x)) = bk(P(2n−3)×(2n−3)(x)) + 2 × (2n − k − 1) ×
bk−1(P(2n−3)×(2n−3)(x)) + (2n− k)× (2n− k − 1)× bk−2(P(2n−3)×(2n−3)(x))

where n ≥ 3, 2 ≤ k ≤ 2n − 3 and b1(P1×1) = 1, b1(P1×1) = 4, b2(P3×3) = 2. Note for
all k > 2n− 2, bk(P(2n−1)×(2n−1)(x)) = 0

9.2.1. Special Cases of k = 0, 1

b0 = 1, b1(P(2n−1)×(2n−1)(x)) = 2× n× (n− 1) Holds for all n ≥ 2.

9.3. Proof of Closed Form for b2

Proof 9.0.2 Referring to Figure 7, construct the previous board B(n−1)×(n−1) as a sub-
board within the board Bn×n. Then we see that by doing so, we can construct a recur-
rence relations between b2 of the 2 consecutive boards. To place 2 non-attacking bishops
on Bn×n, there are 3 cases:

1. 2 bishops in the subboard constructed, B(n−1)×(n−1)
2. 1 bishop in B(n−1)×(n−1) and the other 1 outside B(n−1)×(n−1) but in Bn×n
3. 2 bishops placed on cells outside B(n−1)×(n−1) but in Bn×n

Case 1: Number of ways satisfying Case 1 is simply b2(B(n−1)×(n−1)(x))
Case 2: We shall enumerate this by finding the complement:
Total number of ways to place 1 bishop outside subboard and 1 inside subboard without
restriction =

(
(n−1)2

1

)(
2n−1

1

)
= 2n3 − 5n2 + 4n− 1.

Total number of ways to place 2-attacking bishops, 1 in subboard and 1 outside =
3(n−1)(n−2)

2
+ n(n−1)

2
= 2n2 − 5n + 3.

Thus, number of ways satisfying Case 2 = 2n3 − 5n2 + 4n − 1 − (2n2 − 5n + 3) =
2n3 − 7n2 + 9n− 4.

Case 3: Number of ways satisfying Case 3 =
(
2n−2

2

)
·1 +(

(2n−2
1 )(2n−4

1 )
2

) = 2n−2 +2n2−
6n + 4 = 2n2 − 4n + 2.
Therefore, the recurrence relations we have derived is:

b2(Bn×n(x)) = b2(B(n−1)×(n−1)(x)) + 2n3 − 7n2 + 9n− 4 + 2n2 − 4n + 2
= b2(B(n−1)×(n−1)(x)) + 2n3 − 5n2 + 5n− 2

Now, for convenience’s sake, let an = b2(Bn×n(x)), then an = an−1+2n3−5n2+5n−2.
Removing all constants and terms except for an, we get:

an − 5an−1 + 10an−2 − 10an−3 + 5an−4 − an−5 = 0.

Using the method of characteristics equation we obtain: x5−5x4+10x3−10x+5x−1 =
(x−1)5 = 0. Clearly the 5 roots of this equation are 1, 1, 1, 1, 1, then forming generating
functions, we get:

an = (c0 + c1n + c2n
2 + c3n

3 + c4n
4) · 1n
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. Solving a system of equation, we get that (c0, c1, c2, c3, c4) = (0,−1
3
, 1
2
,−2

3
, 1
2
). Hence,

an = −1
3
n + 1

2
n2 − 2

3
n3 + 1

2
n4

= 1
6
n(n− 1)(3n2 − n + 2)

as above.

9.4. Verification of Qu-Sim

The below is a computer programmed code in C++ that counts the number of k bishop
placements even an n × n board.[4] Figure 9 shows the bishop polynomial for square
boards up to dimensions 8× 8 derived from the Qu-Sim which has been verified with the
values generated from the computer program (code attached below for reference).

#include <iostream>
using namespace std;

const int N = 70;

/*
* c1 and c2 represent the number of cells in rows of the 2 sub-boards

* (white and black) of the board

* (By Component Theorem,

* we can simply multiply the bishop polynomial of both sub-boards

* to obtain the overall bishop polynomial.)

*
* dp1[i][j] and dp2[i][j] are number of ways

* to place j bishops onto the first i

* lines of the respective sub-boards (c1 and c2)

*/

int c1[N], c2[N], dp1[N][N], dp2[N][N];

/*
* Initializes the number of cells in a row after rotation (45 deg)

* For example: If n is 3, all the items in c1[] and c2[] are:

* 1, 2, 3, 2, 1 (though they may not be sorted)

* Essentially the function decomposes the board into 2.

*/

void init(int n, int *c1, int *c2)

{
for (int i=1; i<=n; i++)

for (int j=1; j<=n; j++)
{

if((i+j)%2)
c2[(i+j)/2]++;

else
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c1[(i+j)/2]++;
}

}

/*
* Calculates the number of ways j bishops can be placed in:

* the first i lines of the c1 or c2.

*
* The logic behind this function is based on a recursion:

* Let dp[i][j] be the no. of ways to place all j bishops on the first

* i lines.

*
* Then we can represent it recursively as such:

* dp[i][j] = dp[i-1][j] + dp[i-1][j-1]*(c[i]-j+1);

*
* In words, dp[i][j] = no. of ways to place j bishops on the first

* i - 1 lines + no. of ways to place j - 1 bishops on the first i - 1

* lines multiplied by the number of ways to place the last bishop

* on that row in particular (given by (c[i]-j+1))

*
* From the above logic (using c[i] in the definition of dp [i][j])

* we see that c1 and c2 must be sorted.

*/

void bishops(int n, int dp[N][N], int c[N])
{

int i,j;
for (i=0; i<=n; i++)

// since 0-bishop placement is always equals to 1
dp[i][0]=1;

for (i=1; i<=n; i++)
for (j=0; j<=c[i]; j++)

dp[i][j] = dp[i-1][j] + dp[i-1][j-1]*(c[i]-j+1);
}

int main()
{

int n, k, ans, i;
while (cin >> n >> k) {

if (n==0 && k==0) break;

// initiate c1[] and c2[]
init(n, c1, c2);
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// Since items in c1 and c2 are not sorted, we proceed to sort
sort(c1+1, c1+n+1);
sort(c2+1, c2+n);

// call bishops function for both c1 and c2
bishops(n, dp1, c1);
bishops(n, dp2, c2);

ans=0;

/*
* When i bishops are placed on one board,

* k - i bishops (remaining ones) must be on the other.

*/

for (i=0; i<=k; i++)
ans += dp1[n][i]*dp2[n-1][k-i];

cout << ans << endl;
}
return 0;

}

n represents the size of the board (n ∗ n board); k represents the number of bishops. The
outputs of this code corroborate with the bishop polynomial (listed in the table below)
derived from Qu-Sim Theorem
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Figure 3. Even Boards: 2n× 2n
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9.5. Glossary of Notations

Here, a list of the notations mentioned earlier (and are used repeatedly) is compiled for
the ease of reference. They are further categorised for convenience.

9.5.1. General Terms

1. B refers to a board (may or may not be regular); Bm×n denotes a board with m
rows and n columns.

9.5.2. Rook Polynomial

2. Rm×n(x) denotes the rook polynomial of Bm×n; R(B) refers to the rook polyno-
mial of board B [Note: Both notations are used interchangeably.]

3. rk denotes the kth rook coefficient of Rm×n(x)

9.5.3. Bishop Polynomial

4. Bm×n(x) denotes the bishop polynomial of regular Bm×n (in this paper)
5. bk refers to the kth bishop coefficient of Bm×n(x)
6. For regular even boards B2n×2n, the 2 identical –rook equivalent - even sub-boards

are denoted as E2n×2n; whereas the bishop polynomial of the sub-board is denoted
as E2n×2n(x).

7. For regular odd boards B(2n+1)×(2n+1), the even and odd sub-boards are de-
noted as P(2n+1)×(2n+1) and O(2n+1)×(2n+1) respectively; whereas the rook poly-
nomial of the even and odd sub-boards are denoted as P(2n+1)×(2n+1)(x) and
O(2n+1)×(2n+1)(x) respectively.
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