
Study of Impossible Differential Cryptanalysis on
Block Ciphers

Ng Wei En and Yeoh Jia Er
Victoria Junior College

20 Marine Vista, Singapore 449035

Abstract—Impossible Differential Cryptanalysis (IDC) is a
powerful attack that has been successfully applied to several
block ciphers in encryption schemes such as the Advanced
Encryption Standard (AES). To explore and create new attack
variants using IDC, a simple 48-bit Substitution Permutation
Network (SPN) cipher called SmallCipher was created, with
the novel method of using double distinguishers for the IDC
attack. This new attack achieves a time complexity of 229.587

chosen plaintexts, as compared to 229.733 6-round encryptions
with a single-distinguisher. It is theorised that more significant
improvements in optimal time complexity would be observed
for 96-bit SmallCipher, between 264.001 and 290.830 for the
single-distinguisher attack, and between 254.438 and 290.830

for the double-distinguisher attack. Furthermore, the double-
distinguisher attack is theorised to converge more quickly to the
optimal time complexity as the number of plaintext-ciphertext
pairs used increases. Our methods of searching for 6-round
distinguishers presented in this paper and newly discovered
attack variants can be extended to other SPN ciphers such as
AES.

I. INTRODUCTION

The Advanced Encryption Standard (AES), otherwise
known as Rijndael, was established by the U.S. National
Institute of Standards and Technology (NIST) in 2001 [1].
AES is a symmetric-key algorithm, meaning the same key
is used for encrypting and decrypting data. It supersedes
the Data Encryption Standard (DES) and was adopted by
the U.S. government for encryption of classified information.
Nowadays, it is widely used in many encryption software
across the world.

This paper studies Impossible Differential Cryptanalysis
(IDC), an extension of the differential attack, which was first
used by Lars Knudsen on DEAL [2]. Differential attacks
exploit differences in the inputs of a cipher and its effects
on the resultant difference. IDC extends on this idea by using
“impossible differentials” (differentials that occur with zero
probability) in order to eliminate wrong keys. An efficient
method for finding impossible differentials, called a miss-
in-the-middle attack, consists of finding “two events with
probability one, whose conditions cannot be met together” [3].
It has since been successfully applied to several block ciphers
in encryption schemes.

The best known chosen-plaintext attack against 7-round
AES-128 at this time of writing uses IDC, and requires
2106.2 chosen plaintexts, 294.2 bytes of memory, and a time
complexity of approximately 2110.2 7-round encryptions [7].
Other 7-round chosen-plaintext attacks are covered in Table I

TABLE I
A SUMMARY OF CHOSEN-PLAINTEXT ATTACKS AGAINST 7-ROUND AES.

Attack Type Data Time Memory

Brute Force 2128

Square [4] 2128 − 2119 2128 268

Collision [5] 232 2128 2100

Meet-in-the-middle [6] 280 2123 2126

IDC [7] 2106.2 2110.2 294.2

for comparison. Motivated by the effectiveness of IDC on 7-
round AES-128 in comparison to other attacks, the paper aims
to explore and extend IDC attacks further, and implement the
attacks in practice to obtain fast and efficient results. As imple-
menting state-of-art IDC attacks on Substitution Permutation
Networks (SPN) ciphers like AES is impractical, a simpler
but similar SPN cipher, named SmallCipher, was created to
facilitate practical execution of new attack variants.

A. SmallCipher

SmallCipher is a 6-round symmetric block cipher that takes
in plaintexts and keys of 48 bits, represented by a 4 by 3
matrix of nibbles where each nibble is made up of 4 bits.

Each round function is composed of the following opera-
tions in order [8].

1) SubNibbles (SN ): A one-to-one substitution of each
nibble in the input matrix.

2) ShiftRows (SR): An operation that rotates each row in
the input matrix to the right by varying offsets (0 for
the first and second row, 1 for the third row and 2 for
the fourth row).

3) MixColumns (MC): Multiplication of each column in
the input matrix with a fixed matrix in the Galois field
GF (24).

4) AddRoundKey (AK): XOR operation between the input
matrix and the round key.

An initial key addition is performed before the first round,
and MC is omitted in the last round. Round keys are generated
based on a key schedule similar to the AES key schedule,
which allows the derivation of previous round keys given a
specific round key, thereby retrieving the master key.

B. Notations

The following notations are utilized: xI
i denotes input of

round i, while xS
i , xR

i , xM
i , xO

i denote the intermediate



values after the application of SubNibble (SN ), ShiftRow
(SR), MixColumn (MC) and AddRoundKey (AK) operations
of round i respectively. The ith round key is denoted by ki,
with the master key denoted as k0. When decrypting, the
order of MixColumn MC and AK may be interchanged,
by taking the XOR of xR

i with an equivalent round key,
ωi = MC−1(ki). The intermediate value after AK with
equivalent round key will be denoted as xω

i . xi,col(j) denotes
the jth column of xi.

Between two matrices of nibbles, corresponding nibbles
with different values are referred to as “active nibbles”, while
those with equal value are referred to as “passive nibbles”. A
“differential” refers to the difference between two matrices. pi
is the probability that MC−1(xM

i ) leads to the differential of
xR
i (or in cases where MC and AK have been swapped, the

probability that MC−1(xM
i ) leads to the differential of xω

i ).

II. METHODOLOGY

In order to conduct IDC, distinguishers for SmallCipher
need to be obtained before an attack can be carried out. A
“distinguisher” is a series of propagation patterns of differ-
entials which allow an adversary to exploit a cipher, so as
to obtain additional information about secret keys. Programs
for finding distinguishers were implemented in Python 3
[9] and the cipher and attacks in C/C++, compiled with
GCC [10] using flags -O3. The source code is available at
https://github.com/wei2912/idc.

A. Distinguisher Generation

For any pair of differentials (x, y), if the forward propaga-
tion of x by two rounds and backward propagation of y by
one round leads to disjoint sets of differentials, there exist no
plaintext pairs satisfying x whose corresponding output pairs
after three rounds of encryption will satisfy y. Hence, (x, y)
forms a 3-round impossible differential property (IDP). After
finding an IDP (x, y), the program creates a forward extension
of 3 rounds from y, creating a 6-round distinguisher with 2
key guessing rounds included.

B. Standard Attack

The attack is composed of three stages:
1) Plaintext-Ciphertext (PT-CT) Pair Generation: All 212

plaintexts with the same values in the nibbles corresponding
to the passive nibbles of xI

1 are gathered and encrypted. The
ciphertexts are placed in a hash table, indexed by their nibble
values corresponding to the active nibbles of xO

6 . In each row
of the hash table, the ciphertexts are paired with each other
to see if they satisfy the differentials at both xI

1 and xO
6 . A

pairing of two ciphertexts and their corresponding plaintexts is
known as a plaintext-ciphertext (PT-CT) pair. A fixed number
of PT-CT pairs are gathered before moving onto Stage 2.

2) IDC on Partial (k6, ω5) Pairs: For each of the PT-CT
pairs generated in Stage 1, all remaining partial k6s that have
not been eliminated by the previous PT-CT pairs are iterated
through. For each partial k6, a k6 which satisfies the partial
k6 is formed.

Fig. 1. Both Type I 6-round distinguishers combined into one.

Fig. 2. Both Type II 6-round distinguishers combined into one.

The rest of the procedure follows:

1) Decrypt both ciphertexts with the k6 by one round.
2) Observe the differential at xω

5 . If the differential meets
the IDP, iterate through all remaining partial (k6, ω5)
pairs corresponding to that partial k6. Each ω5 contains
the value of key nibbles corresponding to the active
nibbles at xω

5 . For each ω5,
a) Decrypt the two matrices at xω

5 by one round.
b) Observe the differential at xω

4 . If the differential
meets the IDP, eliminate the (k6, ω5) pair.

c) If all of the remaining partial (k6, ω5) pairs cor-
responding to that partial k6 were eliminated, the
partial k6 is eliminated.

After going through elimination of partial (k6, ω5) pairs, a
reduced list of partial k6s is obtained.

3) Brute Force: For each remaining partial k6, all the
possible values in the nibbles corresponding to the 8 passive
nibbles at xO

6 are iterated through to form k6s. For each k6, the
middle column of ω5 is derived. If it satisfies the remaining



Fig. 3. Combining partial k6 lists from both distinguishers. The shaded boxes
indicate the active nibbles of the differential at xO

6 for each distinguisher.

partial ω5s left, the rest of the keys until k0 are derived and
the keys are tested for correctness.

C. Single-Distinguisher Attack

The two 6-round distinguishers (Fig. 1) have the same prop-
agation of differentials from xO

6 to xI
5 and can be combined

to form a single-distinguisher with a doubled p4. These two
distinguishers shall be called Type I distinguishers, and the
attack referred to as the “single-distinguisher attack”. The
horizontal and vertical lines represent the active nibbles in the
corresponding differential of the first and second distinguisher
respectively. There are another two 6-round distinguishers
which have the same active nibbles in xI

1 and xO
6 , which shall

be called Type II 6-round distinguishers (Fig. 2).

D. Double-Distinguisher Attack

The active nibbles in xO
6 of the Type I and II distinguishers

do not overlap. Combining the partial k6s generated from
both 6-round distinguishers, the values of 8 nibbles can be
retrieved and only the values of the remaining 4 nibbles need
to be obtained through brute force. This effectively reduces the
number of k6s which need to be tested (Fig. 3). This attack is
referred to as the “double-distinguisher attack”.

The double-distinguisher attack is composed of four stages:
1) PT-CT Pair Generation: This stage is carried out simi-

larly to the single-distinguisher attack. As both distinguishers
have the same differential at xI

1, the same group of plaintexts
is encrypted and the additional number of chosen plaintexts
needed is minimal.

2) IDC on Partial (k6, ω5) Pairs Corresponding to Type
I Distinguishers: This stage is carried out similarly to the
single-distinguisher attack with the use of the Type I distin-
guishers.

3) IDC on Partial (k6, ω5) Pairs Corresponding to Type
II Distinguishers: This stage is carried out similarly to the
single-distinguisher attack with the use of the Type II distin-
guishers.

4) Brute Force: The two lists of remaining partial k6s in
the list of partial (k6, ω5) pairs are combined, and all the
possible values in the nibbles corresponding to the 4 remaining
nibbles at xO

6 not covered by Type I or II distinguishers (Fig.
3 are iterated through. For each k6 formed, the middle column

TABLE II
NUMBER OF CHOSEN PLAINTEXTS REQUIRED TO OBTAIN PT-CT PAIRS.

N 15679 31358 47037
Data ∼ 235.411 ∼ 236.418 ∼ 239.997

and last column of ω5 is derived. If it satisfies the remaining
partial ω5s left from conducting IDC on the first and second
distinguisher, the rest of the keys till k0 are derived and tested.

III. THEORETICAL MODEL

In order to pick the best distinguishers to use for attacks
on 48-bit SmallCipher and estimate the performance of the
attacks when extended to 96-bit SmallCipher, a theoretical
model was constructed and calculations were made on the time
complexity of the attacks. Details of the model are provided
in the Appendix.

IV. RESULTS

The attacks were benchmarked on a Google Compute En-
gine instance [11] running Ubuntu 16.04, with one virtual CPU
and 3.75 GB of memory.

A. Data Complexity

In order to decide the number of PT-CT pairs per dis-
tinguisher (N ) to use, the number of partial (k6, ω5) pairs
left after N rounds of filtering, 24(4+2)(1 − 2p4p5)

N =
224(1 − 2p4p5)

N , was set to 216, 28 and 1. This gives N =
15679, 31358 and 47037 respectively, which represents the
number of PT-CT pairs per distinguisher to use. The number
of encryptions required to generate a specific number of PT-
CT pairs was measured thrice, and the mean was taken (Table
II). In order to obtain the highest number of PT-CT pairs per
distinguisher, 47037, approximately 236.997 chosen plaintexts
were required. This shows that the data requirements for the
attacks are realistic.

B. Time Complexity

A single dataset was used for brute force and three datasets
were used for the single and double-distinguisher attack. For
each dataset, the programs were benchmarked thrice and the
mean was taken.

The lower and upper bounds for the IDC stages and brute
force were calculated, as well as the total time taken. For
comparison, estimates of the time complexities were made by
dividing the time taken for the IDC stages and the brute force
by the time taken to conduct brute force (∼ 207 days) and
multiplying by 248, the theoretical time complexity of brute
force.

Table III and IV present time complexities for the single
and double-distinguisher attack. The upper row indicates the
theoretical time complexity, while the lower row indicates the
estimated time complexity from running the attack in practice.

The single-distinguisher attack has an estimated time com-
plexity of 229.733 whereas the double-distinguisher attack
has an estimated time complexity of 229.587, both requiring



TABLE III
CALCULATIONS OF TIME COMPLEXITIES OF SINGLE-DISTINGUISHER

ATTACK.

N IDC with Type I Brute Force Total

15679
225.785 to 227.563 240 to 243.020 240.000 to 243.020

24.3 s exceeded exceeded
(∼ 228.510) (?) (?)

31358
225.790 to 228.462 232 to 242.831 232.019 to 242.831

25.5 s 1587.1 s 1612.6 s
(∼ 228.584) (∼ 234.542) (∼ 234.565)

47037
≤ 229.011 224 to 242.830 ≤ 242.830

25.7 s 30.9 s 56.6 s
(∼ 228.594) (∼ 228.860) (∼ 229.733)

TABLE IV
CALCULATIONS OF TIME COMPLEXITIES OF DOUBLE-DISTINGUISHER

ATTACK.

N IDC with Type I and II Brute Force Total

15679
226.785 to 228.563 232 to 242.836 232.038 to 242.837

48.7 s exceeded exceeded
(∼ 229.515) (?) (?)

31358
226.790 to 229.462 216 to 242.830 226.791 to 242.830

51.2 s 1.3 s 52.5 s
(∼ 229.589) (∼ 224.232) (∼ 229.624)

47037
≤ 230.011 ≤ 242.830 ≤ 242.830

51.2 s neg 51.2 s
(∼ 229.589) (∼ 0) (∼ 229.587)

236.997 chosen plaintexts. Both attacks have been shown to be
significantly faster than brute force. The double-distinguisher
attack is also marginally faster than the single-distinguisher
attack, as conducting IDC with the Type II distinguishers
and brute forcing on the remaining 4 nibbles was faster than
conducting brute force on the remaining 8 nibbles.

V. CONCLUSION

When implemented in practice, the single-distinguisher at-
tack on 48-bit SmallCipher had an estimated time complexity
of 229.733 whereas the double-distinguisher attack had a time
complexity of 229.587, both requiring 236.997 chosen plaintexts.
This is a significant improvement over brute force.

The attacks presented can be generalised to a 96-bit Small-
Cipher, with bytes instead of nibbles. This presents a theoreti-
cal time complexity between 264.001 and 290.830 for the single-
distinguisher attack, and between 254.438 and 290.830 for the
double-distinguisher. Based on Fig. 4, the lower bound on time
complexity of the double-distinguisher attack converges faster
to the optimal time complexity than the single-distinguisher
attack as N increases. It is likely that the double-distinguisher
attack will be significantly faster than the single-distinguisher
attack in practice, for smaller values of N .

The methods of searching for 6-round distinguishers pre-
sented in this paper and our newly discovered attack variants
can also be extended to other substitution permutation net-
works such as AES. The possibility of finding tighter bounds

Fig. 4. Graph of lower bounds on time complexity of single and double-
distinguisher attacks against 96-bit SmallCipher.

for the time complexity of single and double-distinguisher
attacks can be explored, so as to obtain a more accurate
estimate of the time taken.

ACKNOWLEDGMENT

The authors would like to thank DSO National Laboratories
for providing facilities to aid in the completion of this research,
their mentor Mr Low Yu Bin for his invaluable support and
guidance, and everyone else who has helped them in one way
or another.

APPENDIX
DERIVATION OF THEORETICAL MODEL

A. Probability Considerations

Each MC operation is associated with a probability cost.
For each column with k active nibbles, there must be at least
5− k active nibbles after it passes through MC and similarly
for MC−1.

For both Type I and Type II distinguishers, there are three
and two active nibbles in the middle column of xω

4 and xω
5

respectively. As each nibble can take on 24 values, p4 ≈ 153

164

and p5 ≈ 152

164 .
The two Type I distinguishers lead to the same differential

at xO
4 . If MC−1(xO

4 ) leads to either of the two differentials
at xω

4 , each with a probability of p4, then the IDP is satisfied.
Therefore, the probability of ω5 leading to the IDP is 2p4.

B. IDC Time Complexity

Let T1,n be the time complexity of the nth round of
filtering, measured in 6-round encryptions, and T1 be the time
complexity of IDC.

In the first round of filtering, the program performs a guess
on the four active nibbles of partial k6s by testing all 24·4

partial k6s to determine if they lead to the differential at xω
5 .

Each guess requires a single one round decryption.
24·4 · p5 partial k6s will lead to the required differential at

xω
5 . At xω

5 , there will be two active nibbles. Key guessing will



be performed on 24·2 ·24·4 ·p5 partial ω5s to determine if they
lead to the differential at xω

4 .
Summing up the time complexity from both steps and taking

each guess to have a time complexity of 1/6th of a 6-round
encryption,

T1,1 =
1

6
· 24·4(1 + 24·4 · p5) (1)

For the second round of filtering, there are 24·2 ·24·4 ·p5 ·(1−
2p4) partial (k6, ω5) pairs that did not lead to the differential at
xω
4 during the second round of filtering, and must be guessed.
However, for a partial k6 to be eliminated, all partial

(k6, ω5) pairs for 0 ≤ ω5 < 24·2 must be eliminated. As it
is difficult to estimate the number of partial k6s left after each
round, a lower and upper bound of the number of partial k6s
is calculated instead.

1) Lower Bound on IDC: As it takes at least 24·4 partial
(k6, ω5) pairs eliminated to eliminate one partial k6, there can
never be more than one partial k6 eliminated per 24·4 partial
(k6, ω5) pairs eliminated.

From the first round of filtering, there are 24·4(1−p5) partial
k6s that did not decrypt to meet the differential at xω

5 , and
24·4 · p5 · (1− 2p4) partial k6s that met the differential at xω

5

but not xω
4 . Summing the two together, a lower bound on the

number of partial k6s guessed is 24·4 · (1− 2p4p5).
Adding together the time complexity of guessing the re-

maining partial k6s and the remaining partial (k6, ω5) pairs,

min(T1,2) =
1

6
· 24·4(1 + 24·4p5)(1− 2p4p5) (2)

2) Upper Bound on IDC: Assume that no partial k6 is
eliminated until the end of key guessing, and there will always
be 24·4 partial k6s to guess while iterating the first round of
filtering for each PT-CT pair. Therefore,

max(T1,2) =
1

6
· 24·4(1 + 24·2 · p5 · (1− 2p4p5)) (3)

However, this assumption only holds when the number of
partial k6s left after N rounds of filtering is at least 1, ie.

24·4(1− 2p4p5)
N ≥ 1

=⇒ 0 ≤ N ≤ −(4 · 4) · ln 2

ln(1− 2p4p5)

3) Overall Time Complexity on IDC: The overall time
complexity T1 =

∑N
i=1 T1,i for IDC is calculated by extending

the above to N rounds of filtering, and described by these two
equations:

min(T1) =

1

6
· 24·4 ·

(
1

2p4p5
+

24·4

2p4

)
·
(
1− (1− 2p4p5)

N
)

(4)

max(T1) =

1

6
· 24·4 ·

(
N + 1 +

24·4

2p4

(
1− (1− 2p4p5)

N
))

(5)

C. Single-Distinguisher Attack

The single-distinguisher attack conducts IDC once, then
conducts brute force on the remaining partial k6s.

All possible values of the passive nibbles in xO
6 are iterated

through and k0 is derived from each k6 by working backwards
based on the key schedule. Deriving the keys and brute forcing
incurs a cost of approximately one 6-round encryption.

Let T2 be the time complexity of brute forcing the remaining
keys.

1) Lower Bound on Brute Force: The filtering of k6s based
on the remaining (k6, ω5) pairs is assumed to pose no cost.
The probability that a k6 satisfies one of the remaining (k6, ω5)
pairs is equivalent to the probability that a (k6, ω5) pair is not
eliminated after going through N plaintext-ciphertext pairs,
or (12p4p5)

N . Hence, the program only needs to perform
encryptions using the remaining 248(12p4p5)

N k6s.

min(T2) = 248(1− 2p4p5)
N (6)

2) Upper Bound on Brute Force: The cost of deriving an
ω5 from a k6 is approximately 1/12th of the time taken to
perform a 6-round encryption. This is because deriving an ω5

from a k6 takes up 5 table lookups while performing a 6-round
encryption takes up 72 table lookups.

Due to the properties of the distinguisher, only the middle
column of ω5 needs to be derived to determine if a k6 has been
eliminated. Hence, the cost of filtering a k6 is 1

12 ÷ 3 = 1
36 of

the time taken to perform a 6-round encryption.

max(T2) = 248
(

1

36
+ 248(1− 2p4p5)

N

)
(7)

3) Overall Time Complexity: The overall time complexity
of the attack, T = T1 + T2.

min(T ) =
214

3

(
1

2p4p5
+

28

p4

)(
1− (1− 2p4p5)

N
)

+ 248(1− 2p4p5)
N (8)

max(T ) =
215

3

(
N + 1 +

27

p4
(1− (1− 2p4p5)

N )

)
+ 248

(
1

36
+ (1− 2p4p5)

N

)
(9)

min(T ) can be computed only for the bound 0 ≤ N ≤
−32 · ln 2

ln(1−2p4p5)
.



D. Double-Distinguisher Attack

Each of the two distinguishers use N
2 PT-CT pairs, resulting

in a total of N PT-CT pairs used.
IDC is performed on both distinguishers, causing the time

complexity of key guessing to be doubled. Squaring the
probability that a k6 satisfies a remaining (k6, ω5) pair from
each list, the probability that such a k6 satisfies the condition
for both lists obtained is (1− 2p4p5)

N .
1) Lower Bound on Brute Force: The calculation is per-

formed similarly to the single-distinguisher attack.

min(T2) = 248(1− 2p4p5)
N (10)

2) Upper Bound on Brute Force: The middle column of
ω5 is derived for 248 k6s, incurring a cost of 1/36th of a 6-
round encryption. After filtering based on the middle column,
248(12p4p5)

N/2 k6s remain. The last column of ω5 is derived
for each of these keys, leaving a final number of 248(12p4p5)N

k6s to test.

max(T2) =

248
(

1

36
+

1

36
(1− 2p4p5)

N/2 + (1− 2p4p5)
N

)
(11)

3) Overall Time Complexity: The overall time complexity
T is as follows.

min(T ) =
215

3

(
1

p4p5
+

28

p4

)(
1− (1− 2p4p5)

N/2
)

+ 248(1− 2p4p5)
N (12)

max(T ) =
216

3

(
N

2
+ 1 +

27

p4

(
1− (1− 2p4p5)

N/2
))

+ 248
(

1

36
+

1

36
(1− 2p4p5)

N/2 + (1− 2p4p5)
N

)
(13)

REFERENCES

[1] N. F. Pub, “197: Advanced encryption standard (aes),” Federal infor-
mation processing standards publication, vol. 197, no. 441, p. 0311,
2001.

[2] L. Knudsen, “Deal - a 128-bit block cipher,” complexity, vol. 258, no. 2,
p. 216, 1998.

[3] E. Biham, A. Biryukov, and A. Shamir, “Miss in the middle attacks on
idea and khufu,” in International Workshop on Fast Software Encryption.
Springer, 1999, pp. 124–138.

[4] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner,
and D. Whiting, “Improved cryptanalysis of rijndael,” in Fse, vol. 1978.
Springer, 2000, pp. 213–230.

[5] H. Gilbert and M. Minier, “A collision attack on 7 rounds of rijndael.”
in AES Candidate Conference, vol. 230, 2000, p. 241.

[6] H. Demirci, İ. Taşkın, M. Çoban, and A. Baysal, “Improved meet-in-
the-middle attacks on aes,” in International Conference on Cryptology
in India. Springer, 2009, pp. 144–156.

[7] H. Mala, M. Dakhilalian, V. Rijmen, and M. Modarres-Hashemi, “Im-
proved impossible differential cryptanalysis of 7-round aes-128,” in
International Conference on Cryptology in India. Springer, 2010, pp.
282–291.

[8] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer Science & Business Media, 2013.

[9] “Python 3.0 release.” [Online]. Available: https://www.python.org/
download/releases/3.0/

[10] “Gcc, the gnu compiler collection.” [Online]. Available: https:
//gcc.gnu.org/

[11] “Virtual machine instances.” [Online]. Available: https://cloud.google.
com/compute/docs/instances/


