
Predicting Potential Alzheimer Medical Condition in 

Elderly using IoT Sensors - Case Study 

Chong Zhi Hao Kevin, Tee Yu Xuan, Toh Ling Jing, Phang Shi Jia, Liew Jie Ying, Bertran Queck, Swapna Gottipati* 

School of Information Systems 

Singapore Management University 

kevin.chong.2014, yuxuan.tee.2014, ljtoh.2014, sjphang.2014, jyliew.2014, klqueck.2015, swapnag@smu.edu.sg

 

 
Abstract— Ageing population would cause profound problems 

and the impact is already being felt today in many developed 

countries such as Singapore.  The main concern for the 

Government is to help the citizens with active ageing through 

home ownership and good health care. With Internet of Things 

(IoT) gaining traction globally, Singapore is set to take advantage 

of this technology and leverage it to extend its capabilities 

towards a graceful Ageing-In-Place for the elderly. This ties in 

nicely with the expertise of SHINESeniors project by SMU-iCity 

Lab, which integrates IT with healthcare in ways that creates 

innovative IT health solutions that meet the needs of the elderlies. 

In this project, we study the problem of predicting potential 

Alzheimer conditions in the elderly through the behavioural 

analysis models developed from IoT sensors data. Our findings 

shows that IoT room sensors for location detection can enable us 

the capture the key three variables of elderly behaviour; excess 

active levels, sleeping patterns and repetitive actions. The three 

variables are useful in predicting the early warning signs of 

Alzheimer and we provide recommendations to care-givers based 

on the prediction analysis. We studied the task on 20 elderly 

living alone in the flats equipped with five sensors with the data 

spread over a period of 6 months.    

Keywords-IoT, Alzheimer, ageing population, prediction 

models, visual analytics 

I.  INTRODUCTION 

Population ageing raises many fundamental questions for 
health-care providers and policy-makers. Active ageing 
programs enable people to be independent and prevent or delay 
the disabilities and chronic diseases. Most importantly in 
developed countries like Japan, Singapore, North America and 
Europe, the exponential growth of ageing population is of great 
concern to the Government and health-care providers [1].  

Singapore Government has been working on the active 
ageing projects and encouraging the schools, research labs to 
build solutions for active ageing. SHINESeniors, or Smart 
Homes and Intelligent Neighbours to  Enable  Seniors,  is  a  
SMU-initiated  effort  to  make community care services 
effective through innovations in care delivery by leveraging on  
Information  and  Communications Technology  (ICT) [2]. The 
sensors, installed in the homes of seniors, can help community 
volunteers to better monitor, support them and respond in a 
timely manner to calls for help or falls [3, 4, 5, 6]. One of the 
goals of the sensors is that they can aid in behavior analysis of 
the seniors and predict the possible health issues. Discovering 

unusual patterns of the elderly daily routines can be correlated 
to healthcare issues. 

Our objective in this report is to investigate any probable 
relationship between elderly behavioral patterns and potential 
cases of Alzheimer. In particular, we leverage sensors data and 
analytics to predict potential Alzheimer medical condition in 
elderly.  Early diagnosis of Alzheimer’s symptoms in an 
elderly using technology may provide better action plan by the 
health care service providers. Alzheimer’s can be treated and 
treatment is best at the earliest stages of its onset where it has 
not affected as many parts of the brains [3, 6]. Therefore, there 
is a need for technology based simple, effective and scalable 
solutions that can predict the potential cases of Alzheimer. The 
healthcare solutions based on IoT technology are gaining 
popularity due to the continuous monitoring, cost effectiveness 
and scalability characteristics [3,4]. 

People with Alzheimer often carry out the same activity, 
make the same gesture, say the same thing, or ask the same 
question repeatedly [8]. Repetition is common in dementia 
because of memory loss and general behavioural changes. The 
person may repeat daily tasks, such as shaving, or they may 
collect items obsessively [9]. Alzheimer’s patients often see 
changes in their sleep patterns early. For example, 20-minute 
daytime naps may stretch to several hours per day [10]. The 
most common sleep disorder symptoms in patients with 
Alzheimer are increased daytime sleepiness, night-time 
wandering, confusion, agitation. All these behaviour anomalies 
arises from the Alzheimer symptom identified as ‘sun 
downing’ [11, 13], a situation of confusion and restlessness.  

 

Based on the current Alzheimer studies [10, 11, 12], we 
define three important patterns that enable to predict the 
warning signs of Alzheimer in elderly. Firstly, excessive 
activity levels within the residence. From empirical research, 
we deemed that if there are too many activities (spikes) within 
a short time-frame, it signifies that the person may be showing 
Alzheimer’s symptoms in his/her activity. Secondly, unusual 
sleep patterns in the elderlies’. From empirical research, we 
found out that if an elderly has an abnormal sleeping pattern 
(i.e. high activity out of bedroom at night, and spend time 
sleeping in bedroom during the day), it could indicate a 
potential Alzheimer’s symptom. Thirdly, high levels of 
repetitive behaviour. From empirical research, we found out 
that if an elderly has repetitive behaviour such walking in 



between locations to search for their item or repeating the same 
action, we deemed this activity as a count in the “repetitive 
behaviour” and it may spark an outage during our analysis.  

Our solution is based on IoT sensors data and three patterns 
or variables that are useful in predicting potential Alzheimer 
cases. The prediction analysis model is generated based on 
processed data and visualization techniques. We applied the 
model on the data collected from SHINESeniors project where 
the elderly living flats are equipped with sensors to detect the 
location and movements. We discovered potential cases using 
our solution and provided recommendations to the care givers.  

The rest of the paper is organized as follows. Section II 
presents a brief survey of related work. Section III provides 
details of the dataset. Section IV gives a detailed description of 
the solution design for the prediction models. Section V 
describes our findings and insights. Section VI concludes the 
paper and highlights future research work. 

II. RELATED WORK 

Alzheimer detection: Traditional methods of Alzheimer’s 
detection include detecting linguistic deficits [14], biomarkers 
combined with machine learning algorithms [15], interviews or 
memory tests [16]. These diagnosis methods of Alzheimer’s is 
a challenging, time consuming and tedious process and 
includes limitations of patient time and conscientious 
participation. To overcome these challenges, the technology 
enabled approaches are becoming more popular among health-
care providers. GPS tracking devices and video surveillance 
were two technologies  included  in  this  study,  as  these  have  
been  touted  to  increase  freedom  for  patients  with  
Alzheimer  disease [17]. These techniques are not comfortable 
for patients as they felt stigmatized and felt they were being 
“watched. IoT sensors based solutions are better accepted as 
they are able to track the location and movement of people 
without stimulating their awareness.  

IoTs in healthcare:  IoTs enabled smart homes are not only 
aiming to provide an environment for assisted living [18, 20, 
21], but are also enabling regular monitoring of elderly people 
in an unobtrusive manner [19]. The event monitoring technique 
collects sequences of events or activities, aiming to discover 
the rhythmical repetition of events that may correspond to 
wandering behavior. Sensors could be placed in areas to detect 
movement and vital signs. For example, if the patient is 
becoming more confused and is wandering, the sensor could 
detect a pattern of wandering [22].  On the other hand, if there 

is a sudden drop in activity, this could signal apathy of a patient 
who perhaps is becoming more sedentary and less social. Apart 
from the movements and location analysis, the sensors 
connected to the appliances such as gas, tap and medicine 
boxes provide data for analyzing the usage of the appliances. 
The analysis can aid in detecting the forgetfulness behavior of 
elderly [3].  

IoTs for Alzheimer detection: Raad combined active 
wearable Radio Frequency Identification (RFID) wristband 
together with IR room locators to monitor the whereabouts of 
the elderly at room level [7]. The prediction models are not 
studied by their team yet. Yuki et al. used the IoT technology 
to propose the study of patient behaviour for early detection of 
types of dementia [4]. The key variable in their study is based 
on forgetfulness that is captured from the sensors on gas, taps, 
lights and closing door. They studied only on two patients and 
results are basically comparison analysis. In our project, we 
apply the similar approach by Yuki whereby we leverage data 
from IoT sensors and apply statistical models. However, the 
key variables in our study are sleeping disorders, extreme 
active levels and repetition behavior. Further, we studied our 
approach on twenty elderly living alone in the flats equipped 
with room sensors and main door sensor.  

In the next section, we present our dataset and the details of 
IoT sensors. 

III. DATSET 

The data is associated with each elderly living alone in the 
one bedroom flat of similar structure [2]. The primary dataset 
for our project is IoT sensors data of 6 months.  The sensors 
would detect movements in a specific area whereby it enables 
the detection the behavioral patterns of elderly living in the 
flats. Each record data was represented by the date and time, 
different areas of location in the dataset - living room, 
bedroom, bed, bathroom, kitchen, toilet, and main door contact. 
A “yes” in the dataset indicates the detection on the respective 
sensor while a “no” indicate otherwise. Table I shows the data 
description of IoT sensors from 20 different flats. 

The data is collected for every 10 seconds from each sensor 
fixed in twenty elderly living alone flats. The dataset has in 
total 35422587 rows for, ensuring an appropriately large size of 
database to analyze. Larger datasets attribute to the better 
performance of prediction models. The table shows only the 
data columns relevant to our study.  

Figure 1. Alzheimer prediction analysis using IOT solution overview 

 



TABLE I.  SENSOR DATA DESCRIPTION 

Attribute 

Name 

Description Data 

Type 

s_id The identifying elderly ID  ID 

date The date and time of the current sensor 

detection 

datetime 

door_contact

_as 

The sensor detection of any contact 

elderly made with the door (i.e. open 

door to go out / come home) 

Nominal 

living_room

_as 

The sensor detection of elderly current 

location in living room 

Nominal 

bedroom_as The sensor detection of elderly current 

location in bedroom 

Nominal 

bathroom_as The sensor detection of elderly current 

location in bathroom 

Nominal 

kitchen_as The sensor detection of elderly 
current location in kitchen 

Nominal 

 

IV. SOLUTION 

We first present the overall solution design and then 
provide the details of the stages. 

A. Solution Design Overview 

Figure 1 shows the overview of the solution for prediction 
analysis of Alzheimer’s in elderly using IoT data. The stages of 
the design use various popular data warehouse and analytics 
tools as shown in the lower layer.  The first stage is the data 
collection and data cleansing process using Microsoft tools 

[24]. With simple data analysis and findings from previous 
studies related to the Alzheimer [1, 3, 9, 10], we generated the 
prediction variable model from the IoT datasets. In the third 
stage, the data is processed to include the variables for the 
deeper analysis. This requires augmenting the data with more 
features useful for the Alzheimer detection. In the fourth stage 
the visualizations of the data using Tableau [23] provides a 
patterns and insights of the data model. We also used SAS 
Enterprise Guide [25] for quick data analysis and comparisons 
of charts. Finally, in the last stage, the predictions can be done 
on each elderly and the action items for the health-care 
providers are recommended. 

B. Details of Prediction Analysis Solution 

a) IOT data ETL process: The data is imported as 120 

excel files and we used Microsoft SQL Studio to combine all 

the files due to capacity constraints. With that, we will be able 

to sort by elderly ID, as well as date and time. Two main 

challenges are; 

 Missing data - In our data exploration, we observed 

that there was some missing data in the sensor 

readings provided. We removed the missing rows for 

this study. 

 Data contains ‘NOK’s- Likewise, for ‘NOK’ sensor 

readings, we treated them as ‘No’ readings so that it 

would not artificially inflate the mobility levels of the 

elderly. 

b) Define variables for behaviour Analysis: We 

performed a preliminary analysis and defined the prediction 

variables based on the described in introduction section We set 

the thresholds for the three conditions using preliminary 

studies. We augment the data model to aid the prediction of 

Figure 2 Sample heatmap showing number of hours that have more than 20 activities being trigger per day 

 (Variable - excess activity levels) 

 

 



Alzheimer condition for elderly.  Table II shows the details of 

the three variables used in the Alzheimer prediction. 

TABLE II.  PREDICTION ANALYSIS VARIABLES MODEL 

Variables Threshold factors Data columns 

aggregations 

Excessive 

active 

levels 

20 activities and more 

and in 1 hour. 

Count aggregated rows 

grouped by the s_id, 

Hour, Date  

Abnormal 

sleeping 

patterns 

30 activities out of 

bedroom in night 

Count time not in 

bedroom at night 

grouped by s_id, date 

Repetitive 

behavior 

30 repetitions with 

“Location A - Location B 

- Location A” within 5 

minutes. 

Count aggregated rows 

grouped by the s_id, 

Hour, Date where 

duration <5mins 

c) Data Preparation: We run the ETL process based on 

the variables defined in the previous stage. We used MS SQL 

Studio for the ETL process. We assume day time as 8am to 

7.59pm and night as 8pm to 7.59am. We computed the time 

spent in each location based on the day and night of each day 

using Microsoft SQL Management studio and generated a new 

data model for analysis. Overall MS SQL Server ETL model 

is shown in the Figure 3.Figure 4 shows sample SQL script for 

the data preparation stage. This script is used for duration 

calculation. 

 

 

Figure 4.  Sample SQL script for the data preparation for 

predcition analyis variable model 

d) Preliminary Analysis: With the dataset derived 

above, we decided to conduct preliminary behavioural pattern 

analysis on the 20 elderly to have a basic understanding of 

their daily activities and activities undertaken. We used 

Tableau for the detailed prediction analysis for each elderly 

using various visualization graphs. 

We have imported the dataset derived above to Tableau 

for better understanding and visualization of data on a time-

series bar graph. Besides conducting preliminary behavioural 

pattern analysis on the individual elderly, we also run an 

overall analysis on the data to detect elderly with abnormal 

behavior in comparison with the others.  

e) Prediction Analysis: We categorize each elderly into 

three categories of Alzheimer risk cases; abnormal, potential 

issue and normal. We use heatmaps from Tableau to 

categorize the behaviour data for each elderly by day, month 

and time. A sample output is shown in the Figure 2. The 

detailed analysis of this graph is described in Section V. 

For individual Alzheimer prediction, we define a color 

matrix for all three variables and a risk rating matrix to 

demonstrate the severity of the problem. We apply levels of 

problem detection and profile the individuals for the reports 

generation. We did some preliminary analysis on the data for 

finding out the mean, median and standard deviations of the 

data for the durations. Finally, we set the thresholds to 

calculate the prediction scores. Table III shows the color 

thresholds and Table IV shows the risk-color rating scores. 

TABLE III.  HEATMAP COLOR THRESHOLD MATRIX 

 Variables Light  

Red 

Red Dark 

Red 

Number of hours with high 

triggered activities (Daily) 

4-9 

hours 

10-14 

hours 

15-24 

hours 

Figure 3. ETL (Extract Transform and Load) model overview for IOT data preparation 



Hours spent out of bedroom 

location (Daily) 

4-9 

hours 

9-13 

hours 

>13 

hours 

Number of repetitions (Daily) 30-60 61-95 96-161 

 

TABLE IV.  ALZEIMEIR RISK-COLOR RATING MATRIX 

Severity 

Rating 

Threshold for all variables 

Abnormally >70% Light Red or 25% Red or 10% Dark 

Red 

Potential  >30% Light Red or 10% Red or 5% Dark 

Red 

Normal >90% Light Red or <4% Red 

 

V. FINDINGS ANS DISCUSSIONS 

During the preliminary data analysis we conducted, we 

identified some of the unique trends of the elderly, and 

decided to give attention to these elderly. The elderly that we 

highlighted are “S011, S018, S023, S025 and S028”. In our 

variable data analysis we observed that the second variable, 

“Abnormal sleeping patterns” is biased due to visitors, sensor 

reading inaccuracy and missing data that causes frequent and 

inflated duration calculations. Therefore, we rely only on 

variable 1 and variable 3 for the Alzheimer symptom analysis. 

We first present our findings and then discuss the 

limitations and future work. 

 

A. Findings 

From Figure 2, we can observe the behavior of each 

elderly in the flat. We studied the heatmap for each elderly 

and prepared a report together with manual analysis.  We then 

used both variables 1 and 3 and performed an overall 

Alzheimer prediction analysis. Table V shows the final 

analysis based on variables, 1 and 3. 

TABLE V.  PREDICTION ANALYSIS BASED ON VARIABLES 1 AND 3; 
EXCESS ACTIVE LEVELS AND REPETITIONS. 

 Elderly Excessive active 

levels (Variable 1) 

Repetitive behaviors 

(Variable 3) 

S028 Abnormally Abnormally 

S011 Abnormally Potential Issue 

S018 Potential Issues Abnormally 

S025 Abnormally Potential Issue 

S023 Potential Issues Potential Issue 

S029 Potential Issues Potential Issue 

S027 Normal Abnormally 

S010, S012, S013, 

S014, S015, S016, 

S017, S019, S020, 

S021, S022, S024, 

S026 

Normal Normal 

Based on current studies we genarted risk-action matrix to 

allocate a risk level and action to-be taken for respective 

residents [1, 12, 13].  Table VI shows the risk-action matrix 

for the predicted cases. 

TABLE VI.  RISK – ACTION MATRIX 

Case Risk Level Action to-be taken 

2 Abnormally 

present 

High Risk Schedule priority mobile 

doctor visit 

At least 1 

Abnormally 

present 

Moderate 

Risk 

Schedule mobile doctor visit 

2 Potential issues 

present 

Moderate-

Low Risk 

Schedule social workers visit 

1 Potential issues 

present 

Low Risk Identify as potentially at risk 

individual, close monitoring 

advised 

 

From analysinz both Table V and Table VI, we identified 

a few residents at risk of Alzheimer’s symptoms. From the 

Table V and Table VI, we observe that S028 has a relatively 

high risk of experiencing Alzheimer's as the analysis shows 

him displaying highly abnormal actions related to symptoms. 

Hence caretakers could prioritize a mobile doctor visit to 

examine him as soon as possible. We observe that S011, S018, 

S025 and S027 has a moderate risk of experiencing 

Alzheimer's as they show abnormal behavioral patterns in one 

of our analysis and a potential issue of concern in the other. 

Hence caretakers could schedule mobile doctor visit to 

examine them.  

We observe that S023 and S029 has a moderate-low risk 

as they shown potential issues of concern in both of our 

analysis. Hence, caretakers could schedule social worker visit 

and understand the potential issues they might be facing in 

their daily activities 

These results actually correlate with our initial findings in 

our preliminary analysis that identified S011, S018, S023, 

S025 and S028 as individuals we wanted to deeper 

understanding of. The additional findings on S027 and S029 

which was not identified earlier also shows that our models 

managed to identify behavior anomalies which the preliminary 

analysis might have overlooked.  

B. Discussions 

We observe some limitations in our findings. The first 

limitation is the sensor quality. Due to missing and NOKs, our 

analysis requires some assumptions such as: if the duration as 

we computed are < 10 seconds, we assume that elderly was 

just passing through. More efficient sensors will help in 

producing more accurate results. At the same time, the data 

should be combined with the qualitative information of elderly 

medical conditions and medicines intake for better prediction 

models.  

While exploring the data prepared and visualized in our 

model, we discovered that apart from identifying symptoms of 

Alzheimer disease, this model can also be used for other 



medical conditions. Parkinson's disease causes a deterioration 

of motor functions. It results in patients to exhibit drastically 

slower movement and activity as compared to a healthy 

individual. Variable 1 which identifies the level of activity of 

the elderly can be used to detect such abnormal decline in 

activity levels for the elderly (Seyal, Smith, & Robinson, 

2016). This remains our future research of leveraging 

pervasive technologies for active-ageing in Singapore. 

 

VI. CONCLUSION 

In this work, we study the behaviour of elderly using IoT 

sensors and proposed a prediction model for early detection of 

potential Alzheimer cases. Overall, the model serves as only a 

potential early diagnosis to Alzheimer diseases. A flag in 

behaviour does not necessary mean that the elderly is a 

definite Alzheimer evaluations and further medical 

evaluations should be performed by doctors to confirm the 

risks. Our project shows the potential benefits of IoT sensors 

in studying the behaviour of elderly citizens which can be 

scalable and provide recommendations to the health-care 

providers. 
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