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Abstract— Glioblastomas (GBMs) are cancerous brain tumors 

that require careful and intricate analysis for surgical planning. 

Physicians employ Magnetic Resonance Imaging (MRI) in order 

to diagnose glioblastomas. The segmentation of the tumor is a 

crucial step in surgical planning. Clinicians manually segment the 

tumor voxel-by-voxel; however, this is very time consuming. 

Hence, extensive research has been conducted to semi-automate 

and fully-automate this segmentation process. This project 

explores manual segmentation and utilizes k-means clustering 

technique for semi-automated segmentation. The accuracy of the 

k-means clustering segmentation was measured using the Dice 

Coefficient (DC). The results show that k-means clustering 

provides high accuracy for the segmentation of the enhanced 

region of tumor (which appears bright in the T1 post contrast MR 

image) and hence, it can be efficiently used to speed up manual 

segmentation. 
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I.  INTRODUCTION  

Glioblastomas are aggressive brain cancers, which originate 

from glial cells and are supported by a large network of blood 

vessels. GBMs are grade IV gliomas and have very short 

median survival [1]. There are two types of GBMs: primary and 

secondary. Primary GBMs are more aggressive in nature and 

develop rapidly whereas secondary GBMs grow more slowly 

but can evolve into a high-grade tumor [2]. 

 

GBMs are diagnosed using MR images. For surgical 

planning, it is important to accurately segment and delineate the 

different pathological regions within the tumor on an MRI 

[3].  Different modalities like T1 (T1 pre-contrast), T1CE (T1 

post-contrast), T2 and FLAIR (Fluid-Attenuated Inverse 

Recovery) are used for this segmentation as every modality 

provides different information regarding the tumor structure. 

Manual segmentation requires identification of the different 

tumor parts and labelling each part voxel-by-voxel, a process 

that is time taxing and subjective for clinicians.  Thus, extensive 

research has been conducted to develop and test semi-

automated and automated techniques to aid physicians in the 

qualitative diagnosis of the glioblastomas [3]. 

 

The tumor consists of four regions of interest (ROI): edema, 

necrosis, enhanced tumor and non-enhanced tumor. The four 

parts of a GBM can be identified from the combined efforts of 

four MRI scans: T1CE, T1, T2, and FLAIR. The relationship 

between the modalities is similar to a checks and balance 

system where an ROI may be initially identified by one 

modality but must be endorsed by another modality as well. The 

T1CE modality is used to distinguish the enhanced tumor which 

appears bright white on the scans due to contrast. T1 and T1CE 

are utilized together to determine the non-enhanced tumor and 

necrosis regions of the ROI. T2 and FLAIR are used to 

characterize the edema region, however in T2 while the edema 

is bright white, so are the ventricles of the brain. In some cases, 

when the edema overlaps with the ventricles this poses a 

problem when outlining the boundaries of the tumor for surgical 

planning. Therefore, FLAIR is employed to suppress the 

ventricles and still enhance the edema region of the ROI.   

  

The purpose of this project was to learn manual segmentation 

of GBMs using four different MRI modalities. Alongside, a 

semi-automated technique of segmentation was performed 

using K-means clustering on the BRATS patient data set. The 

clustering performance accuracy was measured using the Dice 

Coefficient.  
 

II. METHODS 

A. Manual Segmentation 

Manual segmentation was performed on The Cancer 
Genome Atlas (TCGA) data set of eighty-five patients. TCGA, 
the National Cancer Institute (NCI), and the National Human 
Genome Research Institute (NHGRI) collaborated to provide a 
public genomic data set for cancer research. The segmentation 
process began with identifying the tumor’s location for each 
patient’s set of MRI scans. Once the tumor was located, the 
contrast enhancing portion of the tumor was distinguished by its 
bright white color on the T1CE scan and dark grey color on the 
T1 scan. These voxels were labeled as CET (contrast enhancing 
tumor) and appear white in Fig. 3. If the T1CE contrast 
enhancing tumor was also bright white on the T1 scan, then these 
regions are considered contrast non-enhancing tumor and the 
voxels were labeled NET (non-enhancing tumor) and appear 



purple in Fig. 3. Dark grey regions inside the contrast enhancing 
tumor ring on the T1CE scan that correlated with light grey 
regions of the T1 scan were labeled NET as well. Nearly black 
voxels on the T1CE scan, also inside the contrast enhancing ring, 
that were dark grey on the T1 scan and bright white on both the 
T2 and FLAIR scans were labeled as necrosis and appear yellow 
in Fig. 3. Finally, any region outside of the tumor that was bright 
white on both the T2 and FLAIR scans represented edema and 
swelling of the brain and appear blue in Fig. 3.  Manually 
segmenting one patient took up to eighteen hours. 

B. K-Means Clustering 

A semi-automated segmentation technique was performed 
on the GBM ROIs of the MRI scans. This technique was tested 
on the Brain Tumor Segmentation (BRATS) data set publicly 
provided by the Perelman School of Medicine at the University 
of Pennsylvania. These scans and their labels, which have been 
manually revised by neuroradiologists every year, were 
considered the ground truths throughout this project. The 
BRATS defines 3 clusters: enhancing tumor, edema, and a 
merged necrosis and non-enhancing tumor. Initially, the whole 
tumor region for each patient of the BRATS data set was 
delineated using the ground truth labels. This whole tumor mask 
consisted of all 4 ROIs as seen in Fig. 1. This mask was binarized 
to isolate the whole tumor from the surrounding brain as shown 
in Figure 1. 

K-means clustering was performed within the whole tumor 
mask. Ten iterations of k-means clustering took two to three 
minutes per modality (Intel CORE i3 2.50GHz processor, with 
6GB Ram). The concept of k-means clustering starts with 
understanding the grayscale spectrum of the MRI scan. The 
frequency of each voxel’s intensity was plotted against the 
intensity range of the voxels in one type of MRI scan. Fig. 2 
represents the histogram of the T1CE MRI masked by the whole 
tumor ROI. 

K-means clustering initially assigns a specified number of 

random centroid points amongst the voxel intensity data set. 

The algorithm then calculates the distance between each 

centroid and every other point in the data set. It assigns the 

centroid with the smallest distance from each data point to that 

respective point.  Next, it calculates the average point amongst 

the cluster of points assigned to one centroid; the old centroid 

is re-assigned to this new location. The algorithm is iterated 

until the change between the centroid location converges. This 

technique determines where the different clusters are located 

along the intensity range, given the number of clusters to be 

formed.  

The code written to implement this concept first loaded two 
NIFTI files: the original MRI scan (T1, T1CE, T2, or FLAIR) 
and the binarized whole tumor mask. In the original MR image 
array, the voxels outside the whole tumor ROI were redundant 
and a part of the background, hence, they were assigned a value 
of zero. This was fed as input to the k-means clustering 
algorithm. The resulting background cluster was removed and 
assigned a value of 0. The new segmentation file was saved. 

 

 

Figure 1.   (a) Original T1CE modality (b) BRATS ground truth 

segmentation (c) Binarized whole tumor ROI mass 

Figure 2.  The Tumor ROI’s Intensity Histogram 

III. RESUTLS AND DISCUSSION 

The first part of this project was focused on manual 
segmentation of the 4 different pathological parts of the GBM 
on MRIs. Fig. 3 illustrates the axial slice of an MRI of a patient 
where the segmentation was performed and verified by a 
neurosurgeon. Manual segmentation is a tedious process and 
also leads to inter-expert variability. Hence, a semi-automated 
segmentation approach was performed using the k-means 
clustering algorithm to determine the labels of each voxel within 
the whole tumor ROI. Fig. 4 represents the axial slice of the MRI 
from four modalities of a patient along with the results of K-
means clustering implementation. 

Due to time constraints, ten patients were randomly selected 
from the BRATS patient data set to undergo another round of k-
means clustering. The T1CE and FLAIR modalities of the ten 
patients underwent a k-means clustering for 2 clusters. The 
T1CE modality’s two clusters represented enhanced tumor and 
combined non-enhanced tumor and necrosis.  FLAIR modality’s 
two clusters represented edema and the remaining whole tumor 
ROI. These two segmentation masks were merged to produce a 
final segmentation mask. The merging order of the clusters was 
first combined non-enhance tumor and necrosis from T1CE, 
second edema from FLAIR, third enhanced tumor from T1CE. 
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Fig. 5 illustrates an example of the axial slice of one of these 
final masks alongside its ground truth from BRATS.  

Figure 3.  (a) T1CE (b) T1 (c) T2 (d) FLAIR (e) Manual Segmentation on the 
T1CE modality where CET, NET, necrosis, and edema appear white, purple, 

yellow, and blue respectively) 

Figure 4.  (a) T1CE (b) T1 (c) T2 (d) FLAIR of a BRATS patient (e-h) 
Corresponding K-means Clustering Segmentation result with four clusters for 

the four modalities respectively.  The different colors in each segmentation 

mask represent the different clusters formed by k-means clustering 

Figure 5.   (a) T1CE (b) K-means Clustering Final Combined Mask (c) 

BRATS Ground Truth 

The dice coefficient analyzes the accuracy of the k-means 
clustering technique with respect to the ground truth labels 
provided in the BRATS data set. Equation 1 illustrates the dice 
coefficient for all the ten selected patients. 

Dice Coefficient = 2*A  B  / [A + B] 

 In (1), A and Brepresents the number of elements in 
the ground truth’s enhanced tumor region and the k-means 
clustering final segmentation mask’s enhanced tumor region. 
Table 1 displays the dice coefficient results for each of the ten 
patients. 

TABLE I.  DICE COEFFICIENT ACCURACY CALCULATED FOR TEN 

PATIENTS 

 

 

 

 

 

 

 

 

 

As mentioned previously, manual segmentation is time 
consuming. Hence, K-means clustering techniques are 
considered a possible automated segmentation alternative. Due 
to time constraints, only ten patients were fully analyzed by the 
proposed methodology set forth initially. One of the drawbacks 
of K-means clustering is that it randomly assigns its centroid 
points within the tumor ROI. This allows for MRI segmentation 
mask labels to differ between patients making it almost 
impossible to later merge the four modality masks to create a 
final simulated segmentation mask. Since necrosis/non-
enhancing tumor and enhancing tumor are easily distinguishable 
on the T1CE modality and the edema region was identifiable 
from the FLAIR modality, only the T1CE and FLAIR modalities 
of the ten patients underwent k-means clustering for 2 clusters 
per modality. These labels of these segmentation masks were 
manually entered into another simulation to merge the T1CE and 
FLAIR masks. These final masks were qualitatively compared 
with the ground truths and it was evident that the non-enhancing 
tumor/necrosis and edema regions were overlapping and 
inaccurate. Thus, dice coefficient was measured for the 
enhancing tumor regions of the final combined segmentation 
masks and the ground truths. According to Table I, the accuracy 
of k-means clustering for the enhancing tumor of the ROI is 82% 
on average. Therefore, it is beneficial to perform k-means 
clustering for this region of the tumor and then manually 
segment the remaining three regions of the tumor. 
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Patient ID DC Accuracy 

TCGA-02-0037 0.7705 

TCGA-02-0064 0.9095 

TCGA-02-0086 0.865 

TCGA-02-0106 0.7717 

TCGA-06-0145 0.7196 

TCGA-06-0149 0.7839 

TCGA-06-0238 0.9141 

TCGA-12-0616 0.7781 

TCGA-19-2631 0.8977 

TCGA-76-4932 0.822 

Average 0.82321 
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