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Abstract—Drowsy driving poses a dangerous threat to road safety. 

This study aims to compare and evaluate the accuracy afforded by 

different modalities in assessing drowsiness, including: 

electroencephalogram (EEG), eye tracker, photoplethysmogram 

(PPG), and video recording. The work also investigates the impact 

of two parameters in the driving tasks on subjects’ level of 

alertness, presence of road-mark and frequency of lane-departure 

events. Ten healthy subjects without sleep deprivation 

participated in individual 1.5-hour experiments. A threshold of 

80th percentile of reaction time was taken as ground truth to label 

data as Drowsy or Non-Drowsy. Using supervised learning 

random forest algorithm and stratified 10-fold cross validation, 

the results suggest that EEG features achieved highest 

classification accuracy: 0.957 and 0.864 for individual and 

combined sessions respectively, followed by eye tracker (0.821, 

0.755 respectively). The highest accuracy of all modalities fell in 

the section that has the longest reaction time. These experiments 

additionally show that an absence of road-marks does indeed 

increase subjects’ reaction time, though they may not necessarily 

become drowsier. Further, low frequency of lane-departure 

events did make subjects drowsier as hypothesized. Since existing 

commercial products that claim to detect drowsiness are very 

expensive and target at vehicle transportation companies only, 

they are not available to daily private car users. As such, this type 

of study deserves attention so that drowsiness detection products 

could be made affordable and accessible to both professional 

drivers and daily private car users.  

Keywords-drowsy driving; multi-modal; low-cost; driving simulator; 

reaction time; random forest classifier  

 

I.  INTRODUCTION  

Drowsy driving is a great concern to road safety. 25% of the 

deadly traffic accidents on the highway are caused by the 

temporary drowsiness of drivers, according to the German 

Road Safety Council [1]. Likewise, based on police reports, 

the US National Highway Traffic Safety Administration 

(NHTSA) estimated that driver drowsiness is the culprit of at 

least 100,000 vehicle crashes each year [1]. To truly prevent 

these devastating accidents, the driver’s state of drowsiness 

should be monitored. 

 
Current measures to monitor a driver’s drowsiness can be 

mainly categorized into two broad types: vehicle-based and 

user-based, which can, in turn, be further divided into 

behavioural and physiological measures. This study focuses 

on user-based measures - both behavioural (eye tracker [2] and 

video recording [3]) and physiological (EEG [4] and PPG [5, 

6]). Compared to vehicle-based measures that analyse the 

external effects of drowsiness on vehicle motion, user-based 

measures directly monitor the internal state and behaviour of 

drivers. The onset of drivers’ drowsiness is a gradual, which 

constitutes a cumulative process that often takes sometime 

before it manifests into noticeable changes in vehicle motion. 

In this study, we hypothesise that user-based measures are able 

to detect this earlier, and more reliably, than vehicle-based 

measures. Consequently, there is a high chance that the 

warnings afforded by vehicle-based measures may be too late 

to prevent the impending accident as the tragedy may have 

already taken place when the vehicle begins to move 

abnormally. 

 
There are already several commercial driving fatigue 

monitoring and management systems available that claim to be 

able to detect the early onset of drowsiness in real-time. The 

ground rule in such systems is that they must not distract the 

drivers from their driving task. A few examples of such systems 

are SmartCap, Optalert and GuardVant, which utilize EEG 

(SmartCap Tech) [7], eye tracking (Optalert) [8] and real-time 

video facial detection (GuardVant) [9] respectively to detect 

drowsiness. However, aside from technical difficulties such as 

being able to operate accurately over expected range of vehicle 

temperature, humidity, and vibration conditions, each system 

only makes use of a single modality.   

 

This study aims to compare and evaluate the accuracy of 

different modalities – EEG, eye tracker (E.T.), PPG, and video 

recording – in assessing drowsiness. This study also 

investigates the impact of two parameters in the driving 

simulator, presence of road-mark and frequency of 

lane-departure events, on subjects’ level of alertness, by 

making an inter-section comparison. It was hypothesised that 

the presence of white road-marks as moving and repetitive 

visual stimuli induces mental fatigue and thus drowsiness 

from drivers and that low frequency of lane-departure events 

would cause drivers to react longer and become drowsier.  

 

II. EXPERIMENT DESIGN  

A. Driving Simulator  

The driving simulator comprises of a fixed base, a gaming 

steering wheel, and a desktop screen (see Fig. 1). The 

simulation created a monotonous driving environment, which 

is more likely to cause mental fatigue [10]. There was a single 

car travelling at fixed speed on a three-lane highway, with no 

random or discrete visual stimulus that may disturb the 

monotonous pattern.  



 

Figure 1.  Experiment Setup 

B. Sensors  

The sensors used in the experiments included: a MUSE EEG 

Headband, a Tobii EyeX Eye Tracker, a Shimmer PPG, and a 

Kinect Xbox 2.0 (see Table 1).  

TABLE I.  USE OF SENSORS IN THIS STUDY 

Modality Model (Cost) 
Features used in this 

study  
Sampling rate  

EEG 
MUSE Headband 

(US$250) 

Raw EEG singals from 
4 channels: Tp9, FP1, 

FP2, Tp10, with 3 

reference channels  

256 Hz 

E.T. 
Tobii EyeX 

(US$80) 
Gaze position 

60 Hz, with eye 
to application 

latency 15 ms＋/

－5 ms 

PPG Shimmer Calibrated PPG values  256 Hz 

Video Kinect Xbox 2.0 
Real-time video 

recording  
Around 15fps 

C. Procedure 

All experiments started at 530 pm at the lab at ASTAR 

Institute for Infocomm Research, Singapore. Subjects were 

asked to perform five driving tasks in a pre-determined 

sequence: circuit driving, followed by Section 1 to 4 (see Table 

II), with no intermission in between. Subjects were taught how 

to move from one section to another prior to the tasks, and then 

performed the tasks alone in the lab.  

TABLE II.  PROCEDURE 

For the 5-min circuit driving task, subjects were able to 

control the car movement freely. This resembles arcade car 

games. This was to set contrast with the latter sections in which 

subjects had no control. By using the Karolinska Sleepiness 

Scale [11], all subjects reflected no increase in their level of 

sleepiness after the completion of this task. Therefore all data 

obtained during this time was treated as Non-drowsy data.  

 

As indicated in Table 1, the tasks corresponding to S1 to S4 

each last 15 minutes. For these tasks, the simulator 

automatically and randomly causes the car to deviate away 

from the central lane, which was considered as a lane-departure 

event. Subjects were instructed to keep the car in the central 

lane using the steering wheel whenever a lane-departure event 

occurred. The probability of a left and a right deviation was 

kept uniform (i.e. at 50% to 50%) for all four car-deviating 

tasks. The time interval between each adjacent event varied 

from task to task and from event to event. The time of a correct 

response onset was recorded when the subjects turned the 

steering wheel in the expected direction; conversely it was 

recorded as the time of a wrong response onset. Finally, the 

time of no response onset was recorded if subjects made no 

response within the maximum reaction time allowed of 5.9 

seconds after deviation onset. In this third case, the car was 

automatically returned to the central lane. If the subject turned 

the steering wheel when the car was supposed to be travelling 

straight on the central lane, the car would not deviate, though a 

false turn would be recorded.  

 

III. DATA PROCESSING AND 

ANALYSIS  

A. Data Labelling 

RT for each lane-departure event was calculated as the time 

latency between deviation onset and response onset. Number of 

errors and misses were also counted. 

 
Figure 2.  Illustration of data labelling process 

As seen in Fig. 2, EEG segment between deviation onset of 

En and response onset of En was chosen where subjects were in 

the natural state in absence of visual stimuli. This was when 

subjects started to feel drowsy, which caused them to respond 

slower to the next event. EEG segment between deviation onset 

of En and response onset of En was not taken into consideration 

because that segment involves information processing and 

execution of attentional network of subjects [12], in fulfilment 

Task 

index 

Task details  

Task type  Duration 

Time 

interval 

between 

events  

Presence 

of 

road-marks 

Time 

recorded 

for below 

events  

Circuit  Free driving  15 min - Present  

Start and 

end of the 
section  

Section 
1 (S1) 

Car-deviating 

(Left 50% 

Right %) 

15 min Short, 2-8 
s in 

random 

Present  
Start and 

end of the 
section; 

Deviation 

onset; 

Response 

onset 

(correct, 
wrong, no 

response); 

False turn  

Section 
2 (S2) 

15 min Absent  

Section 

3 (S3) 
15 min 

Long, 

10-19 s in 

random 

Present  

Section 

4 (S4) 
15 min Absent  



of the task demand. It was assumed that subjects would become 

slightly more alert when they visualized each lane-departure 

event and responded to it [13]. The same data labelling method 

applies to eye tracker data. 

B. Feature Extraction  

TABLE III.  FEATURE EXTRACTION  

Modality Data  Feature extracted  

EEG 
Raw EEG 

Data  

Moving average of delta (0.3-4 Hz), theta 
(4-8 Hz), alpha (8-12 Hz), low beta (12-18 

Hz), high beta (18-30 Hz), beta (12-30 Hz), 

and gamma (30-40 Hz) band energy  
Start and end of the section 

Eye Tracker 

Gaze 

Position  

Gaze position and their changing velocity* 

with a new sampling rate of around 1.33 Hz  

PPG 
Calibrated 

PPG Data  

Fast Fourier Transform (FFT) and 
AutoRegression (AR) heart rate variability** 

(HRV) spectrograms for each section [14] 

*Velocity＝Displacement÷Time 

** HRV is a measure of the beat-to-beat (R-R Intervals) changes in the heart rate. In HRV the low (LF) 

and high (HF) frequencies fall in the range of 0.04–0.15 Hz and 0.14–0.4 Hz, respectively.  

 

C. Classifier Training and Validation 

Data was then applied to the supervised learning random 

forest algorithm [15] in software Orange3 in order to train a 

classifier that categorised if a subject is Drowsy or Non-drowsy. 

Ten trees were used and subsets smaller than five were not split. 

Stratified 10-fold cross validation [16] was then employed to 

evaluate viability and classification accuracy (CA).  

 

IV.  DISCUSSION 

EEG features achieve higher CA, precision and recall than 

E.T. features across all sections (see Table III). This is because 

EEG measures the internal state of subjects, while E.T. 

measures their external behaviour. The onset of drowsiness 

may be so subtle that it could not be reflected in eye 

movement. Furthermore, EEG has seven features from each 

independent channel. However, only two features were 

extracted from E.T. data, i.e. gaze position and its dependent 

velocity. This smaller number and dependency of E.T. features 

may translate to lower CA.  

TABLE IV.  CA COMPARISON BETWEEN EEG AND E.T. 

 

The CA of EEG features decreases when data of all four 

sections were combined for training (see Table III): overall 

accuracy is lower than any single section’s accuracy. In 

contrast, while accuracy of E.T. features also falls, it is even 

higher than the average accuracy. For E.T. features, highest 

accuracy was achieved when both gaze position and velocity 

features were applied (see Table IV). In particular, gaze 

position feature gave a higher accuracy than velocity feature. 

Unlike velocity and EEG where the accuracy fell when data 

were combined across sections for training, the gaze position 

accuracy increased.  

TABLE V.  CA COMPARISON BETWEEN EEG AND E.T. 

 

This finding suggests that gaze position was not affected by 

the parameters in the driving tasks. This may be because the 

road pattern on the simulator screen was not changing in 

different sections: always monotonous with three driving lanes 

on the highway. Subjects had adopted their own way that they 

were comfortable with to look at the screen throughout the 

experiment.  

 

Additionally, for each subject, the section that obtained the 

highest accuracy from both modalities (in this case S2) had the 

longest RT, which also had the largest range and standard 

deviation (SD) (see Table IV). When RT spans over a longer 

range and varies more greatly from each other, as depicted in 

the box plot in Fig. 3, the labelling method can recognize 

drowsy data better and more accurately, which then gave the 

modalities higher CA.   

 

It was also observed that for each subject, the ranking of 

CA of EEG and E.T. features is identical in Table III. This 

consistency suggests data labelling and both methods reliable. 

TABLE VI.  CA COMPARISON BETWEEN EEG AND E.T. 

 

Section Feature CA Precision Recall 

S1 
EEG 0.93 0.93 0.93 

E.T. 0.73 0.65 0.73 

S2 

EEG 0.96 0.96 0.96 

E.T. 0.82 0.76 0.82 

S3 
EEG 0.95 0.95 0.95 

E.T. 0.77 0.72 0.77 

S4 
EEG 0.88 0.84 0.94 

E.T. 0.69 0.67 0.69 

Avg. 
EEG 0.93 0.92 0.95 

E.T. 0.75 0.70 0.75 

All 
EEG 0.86 0.87 0.86 

E.T. 0.76 0.68 0.76 

Section Feature CA 

S1 

Gaze position 0.73 

Velocity 0.67 

Both features 0.75 

S2 

Gaze position 0.75 

Velocity 0.74 

Both features 0.81 

S3 

Gaze position 0.76 

Velocity 0.73 

Both features  0.78 

All 

Gaze position 0.77 

Velocity  0.73 

Both features 0.78 

Section RT Range RT SD 

S1 1.79 0.263 

S2 2.61 0.356 

S3 0.98 0.184 

S4 1.50 0.258 



 

Figure 3.  RT Box Plot (from top to bottom S3, S1, S4, S2 respectively) 

It was observed that both FFT and AR spectrum patterns of 

S1 and S3 is similar (see Figure 4). Similarly, circuit driving, 

S2 and S4 also share similar patterns. These interesting 

findings may be due to the absence of road-marks. Since data 

in circuit driving was treated as Non-drowsy data, the 

similarity in pattern suggests subjects were rather alert in S2 

and S4 as compared to S1 and S3. Thus the absence of 

road-marks actually caused subjects to become more active, 

instead of drowsier.   

Figure 4.  HRV spectrums for all sections 

RT is longer when road-marks are absent; this holds true for 

all subjects studied.  This is evident in Fig. 5, where colour 

for S2 and S4 is much deeper compared to that for S1 and S3 

(S1 and S2 are longer because the events were more frequent).  

 

  

Figure 5.  RT Heat Map Across Sections 

This is because absence of road-marks makes lane departure 

events more difficult to recognize. Contrary to the hypothesis 

that moving road-marks as repetitive visual stimuli would 

exacerbate mental fatigue of subjects, subjects reflected that 

the presence of road-marks helped recognize each 

lane-departure event easier. They were thus able to make 

faster reaction for each deviation. This study thus proves the 

importance and necessity of road-marks in maintaining road 

safety on highway. Future work can focus on the most 

desirable combination of length, width, colour and shape of 

road-marks in keeping drivers alert, so as to be implemented 

in reality.  

 

It was hypothesized that low frequency of lane-departure 

events induces mental fatigue more greatly than high 

frequency. Among ten subjects, nine of them had longer RT in 

S3 and S4; one of them had lower RT instead. The results are 

thus able to prove the hypothesis. This difference in RT and 

SD was magnified by the absence of road-mark. The fact that 

there was a set of anomalous data also suggests that frequency 

indeed influenced RT. It may be concluded that frequency of 

lane-departure events had different effects on different 

subjects, causing them to respond either slower or faster. This 

phenomenon could only be explained by individual variances. 

The anomalous subject actually revealed that she was singing 

in the last two sections in order to maintain alert. This reflects 

one limitation of the experiment: as much as the process was 

kept natural and comfortable for subjects, they might choose 

to take effort to maintain alert instead of yielding to 

drowsiness. In contrast, one subject made no effort to stay 

alert and he actually slept for half of the last section.   

  

V. CONCLUSION 

This study established two comparisons: inter-modality and 

inter-section. EEG features obtained higher accuracy than E.T. 

features across all sections. Further, for each subject, the 

ranking of EEG and E.T. accuracy of different sections was 

identical. Both methods yielded highest accuracy in the section 

that had longest RT, which in turn had greatest range and SD. 

Gaze position feature afforded a higher accuracy than velocity 

feature; highest accuracy was obtained when both features were 

used. Unlike EEG and velocity features, gaze position feature 

actually yielded a higher accuracy when data from all four 

sections was used to train the classifier. Therefore, it suggests 

that E.T. features perform more consistently in changing road 

conditions, which is an advantage over EEG features despite 

its lower accuracy. HRV spectrums suggest that absence of 

road-mark made subjects more active.  

 



Absence of road-marks increased RT of all subjects, which 

was not due to increased drowsiness but the increased difficulty 

of the tasks. This study proved the importance and necessity of 

road-marks in protecting road safety. Low frequency of 

lane-departure events induces drowsiness from drivers. The 

limitation of this study was mainly due to the young age of 

subjects, who are not real drivers. However, since younger 

people have a shorter reaction time than older drivers [17], it 

was hoped that a higher benchmark would be set in assessing 

driver’s drowsiness. Further, as this experiment was designed 

by the student researcher, there could have been imperfect 

aspects in terms of experimental control; for example, some 

subjects tried their best to stay alert till the end of the 

experiment, while others simply fell asleep. This discrepancy 

caused the inter-subject variances to become very huge, which 

in turn diminished some significance trend that inter-subject 

data might unveil. Last but not least, the risk that drowsy 

driving carries makes this type of research dangerous to be 

carried out in the real-world context, where the safety of the 

subjects is not guaranteed. However, there are a few 

sensor-based studies that are tested in real-environment [18, 

19]. Studies have pointed out that reaction time will be more 

affected in a simulated environment [18], which is likely to 

cause higher subjective and physiological drowsiness [19]. 

Hence, it is only possible for this study to be carried out in the 

simulated setting at this preliminary stage.  

 

Nevertheless, this study is the first in the field that compares 

the accuracy of different modalities and meanwhile investigates 

the impacts of road-marks and frequency of lane-departure 

events, on driver’s drowsiness, with the employment of 

visualisations. Future work could continue in this direction and 

find out the most desirable combination of length, width, shape 

as well as colour of road-mark and the most desirable frequency 

of events to optimise driver’s alertness. In future work, more 

expressive and representative features may be extracted from 

data to aim for even higher accuracy. Greater number of 

subjects in different age brackets would be included to 

enhance the inclusiveness of the finding.  

 

In conclusion, low-cost commercial sensors show high 

potential in assessing drivers’ drowsiness. Existing products 

that claim to detect drowsiness target mainly truck drivers and 

the companies behind them. As such, they are almost 

inaccessible to private car owners. Although the relatively low 

complexity of the features is the trade-off of the much lower 

costs and greater usability of commercial sensors as compared 

to expensive clinical sensors, high accuracy (above 95%) of 

the EEG sensor encourage future research and make it 

affordable to both professional drivers and private car users.  
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