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Abstract—Brain-computer interface (BCI) allows people to
control a computer system using their brain signals. The recent
availability of consumer-grade electroencephalography (EEG)
headsets enables this technology to be used outside the lab.
In particular, there has been interest in controlling a drone
using brain signals. We propose a system that allows users
to manipulate the thrust of the drone using consumer-grade
EEG headsets. Active concentration, represented by EEG band
powers, was investigated as an input modality for the BCI system.
Comparisons were also made between different approaches in
data retrieval and processing, as well as headsets. It was found
that using supervised learning with SVM and the Muse headset
resulted in better performance (around 70%). Offline evaluation
shows that while both Emotiv Insight and Muse had comparable
accuracy, Muse had better usability and was thus adopted in our
system. Online user testing with the implemented BCI system
revealed variable performance across subjects. This highlights
the need for incremental training of both classifier and users for
improved efficacy.

I. INTRODUCTION

Brain-computer interface (BCI) provides a new way of
interacting with devices, by allowing people to control a
computer system through their brain signals without the need
for physical activity. [1] BCI has huge potential as an assistive
technology, for enabling [2] and rehabilitative purposes [3].
Unmanned aerial devices (UAV) or drones have been gaining
popularity in our daily lives, such as in photography. Research
has also been done in designing BCI for drone piloting. Such
BCIs provide users with a hands-free method to control the
drone, This field has potential in allowing the disabled to reach
and interact with objects via the drone [4].

Electroencephalography (EEG) is one of the principle meth-
ods of acquiring brain signals non-invasively in BCI control
applications [5]. Most research in BCI drone control uses
research-grade EEG headsets with 14 to 64 wet electrodes.
While such devices provide the benefit of high accuracy,
they have limited usability due to tedious set-up and clean-
up procedures, high costs and restricted movement [6], [7].
On the other hand, consumer-grade EEG devices are cheaper
and have better usability, but are more vulnerable to noise
and have limited sensors at fixed locations [7]. Nonetheless,
consumer-grade EEG systems have been shown to be able to
demonstrate various neural phenomena [6], [7]. Our proposed
system uses consumer-grade EEG headsets with dry electrodes
to simplify the set-up for drone control.

BCI paradigms provide different interpretation of brain
activity based on the corresponding stimulus or motivation
for system control. They include P300, Steady State Visually
Evoked Potentials (SSVEP) and Motor Imagery (MI). Mental
concentration is investigated in this paper. Several EEG mark-
ers have been identified to be correlated with mental workload,
task engagement and attention [8], which gives rise to various
indices involving EEG frequency bands to measure the level
of engagement [9]–[12]. Most studies about the application
of BCI in drone piloting involve the MI paradigm and EEG
[13]–[16], and multiple modalities [17]. While achieving high
accuracy, many of these systems require long training time
across multiple days for each subject. One important contri-
bution of this article is to investigate if mental concentration
can be used as an input modality for drone control to simplify
the learning process. In addition, mental concentration is a
high level executive function that the user can directly control
without the need for external stimuli, which other modalities
like P300 require.

In this project, we aim to design a BCI that is suitable for
controlling the thrust of the drone (up and down movement)
using consumer-grade EEG headsets. While other research
mainly focuses on a single design and its implementation, this
article investigates and evaluates different approaches in de-
signing the system. We consider the model of the EEG headset
(Emotiv Insight vs Muse), approaches in data processing (data-
driven vs domain-driven), and methods for collecting data for
model building (explicit and induced concentration).

II. BCI DRONE CONTROL SYSTEM

We propose the usage of mental concentration for drone
control. There are two states: inattention and concentration.
The BCI system will increase the thrust of the drone when
the user is detected to be concentrating, and reduce if the user
is determined to not be concentrating or if contact quality is
poor. The Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/) is
used in this project. It is a small quadcopter that supports real-
time parameter setting from multiple platforms (e.g. Windows,
Linux) via radio protocol. Two popular consumer-grade EEG
headsets are evaluated in this paper: Emotiv Insight and Muse
2014 by Interaxon. Table I shows the differences between both
headets.

There are three main modules in the system (Figure 1):



TABLE I: Comparisons between two EEG headsets

Characteristics Emotiv Insight Muse 2014

No. of channels 5 4

Reference electrode location Mastoid Forehead

Frequency bands per channel 5 6

Data transmission rate 128Hz 220Hz

Raw EEG Only with premium SDK Yes

Cost $299 $249

Fig. 1: Overview of proposed BCI system

1) Data acquisition that interfaces with the EEG device to
acquire EEG readings

2) Data processing that performs feature extraction and
converts the acquired data into a mental command (con-
centration state)

3) Drone control that converts the mental command to the
parameters to pilot the drone

The modules have been implemented in Python. Commu-
nication between the different modules is established using
the pub-sub protocol in the Zeromq library over TCP (ze-
romq.org).

III. INVESTIGATION OF DESIGN APPROACHES

Three experiments are designed to investigate different
approaches of determining the state of intentional mental
concentration using low-cost consumer-grade EEG headsets.
In the experiments, the absolute EEG band power readings
(extracted using Fast Fourier Transform (FFT)) provided by
the headsets are used as representation of EEG activity.

A. Experiment Design

Fig. 2: Overview of Research Design

The experiments are shown in Figure 2. 10 participants were
recruited for each experiment. They all have normal corrected
eyesight and hearing, and do not have any psychological
disorder.

Explicit Concentration Experiment (ECE) lasts 20 minutes
with 20 iterations in total. A 2 mins break is given between the
10th and 11th iterations. Implicit Concentration Experiment

Fig. 3: Overview of Explicit Concentration Experiment (ECE)
and Implicit Concentration Experiment (ICE)

(ICE) lasts 15 minutes with 5 iterations. No break is given
during the experiment. The overview of the steps in each
iteration is listed in Figure 3.

B. Evaluation Criteria

1) Comparison between experiment designs for model cre-
ation: We would like to compare between two data collec-
tion procedures for determining the threshold or building the
model: explicit concentration and implicit concentration.

In explicit concentration, concentration is explicitly initiated
by the subjects themselves by pushing the cross mentally;
there is no external stimulus to induce them to concentrate.
This is to simulate the scenario of actual drone control, where
concentration is actively carried out by the user without any
external stimulus to induce it.

In implicit concentration, Psychomotor Vigilance Task
(PVT) is used in order to induce attention from the user in
the concentration phase. It follows a reaction timed paradigm,
where subjects are instructed to react whenever a stimulus
appears on the screen. In this case, we are making the
assumption that induced attention is the same as self-initiated
attention, and that reaction time of the user is a surrogate
measure of concentration. EEG activity has been shown to be
be influenced by PVT [18].

2) Comparison between data processing: Two approaches
of processing the EEG band power data to determine the con-
centration state are investigated: the domain-driven approach
and the data-driven approach.

For the domain-driven approach, we use the domain knowl-
edge about concentration indices to determine if the user
is concentrating. An absolute threshold for the concentra-
tion index is established, and the user is determined to be



TABLE II: Summary of indices used in domain-driven ap-
proach

Index Source Function
β

α+θ
Freeman et al. (1999) [19] Task Engagement

β
θ

Choi et al. (2014) [10] Concentration
β
α

Coelli et al. (2015) [9] Engagement, Vigilance
Frontal asymmetry Coan et al. (2003) [20] Approach/Withdrawal

Fig. 4: Determination of concentration index threshold

concentrating if the index exceeds the threshold. Existing
indices proposed to measure attention and engagement are
investigated in this section. These indices are listed in Table
II. Frontal asymmetry is defined as Powerleft−Powerright

Powerleft+Powerright
or

Powerright−Powerleft

Powerleft+Powerright
, where Powerleft and Powerright refer

to the particular frequency band power at the left or right
frontal electrode respectively.

In the data-driven approach, machine learning is used to
build classifiers based on EEG band power data across dif-
ferent frequencies (α, β, θ, γ) and electrode channels (AF3,
AF4, T7, T8, Pz for Emotiv Insight; AF7, AF8, TP9, TP10
for Muse) as features. The relationship between EEG band
powers and concentration is modelled via supervised learning,
so that predictions on whether the user is concentrating can be
made when the classifier is exposed to new data. The Random
Forest Classifier and the Support Vector Machine (SVM) are
evaluated in this paper.

3) Comparison between headsets: These rubrics are used
for the comparisons between the Emotiv Insight and Muse
headsets:

• Accuracy: level of classification accuracy
• Usability: set-up time and ergonomics
• Extensibility: developer’s ease of obtaining data from

headset, ability to extend on the data provided

C. Results

Referring to Figure 4, the subject-specific threshold for the
domain driven approach is established as the 75th percentile of
the indices during the inattention phase. The true positive rate
of the domain-driven approach for each subject is calculated
as the proportion of indices during the concentration phase
that exceeds the threshold. The accuracy for the domain-driven
approach is therefore calculated using x+0.75

2 . On the other
hand, accuracy for the data-driven approach is calculated using
5-fold cross-validation accuracy over the combined data across
all subjects.

1) Comparison between data processing: Considering the
maximum accuracy achieved across the different indices and

Fig. 5: Comparison of accuracy between data collection and
processing methods

Fig. 6: Comparison of accuracy between Emotiv Insight and
Muse

machine learning algorithms for the domain-driven and data-
driven approach respectively (Figure 5), the data-driven ap-
proach (0.71 for Emotiv ECE, 0.69 for Muse ECE, 0.65
for Muse ICE) yielded better results than the domain-based
approach (0.60 for Emotiv ECE, 0.62 for Muse ECE, 0.54
for Muse ICE). The poor performance of the domain-driven
approach might be due to the difference in band power
calculation and experimental methods. It also suggests that
it may be too simplistic to determine the user’s concentration
state based on a sole index, for the relationship between EEG
activity and concentration might be more subtle.

2) Comparison between data collection: Comparing be-
tween ICE and ECE using Muse headset (Figure 5), better
classification accuracy in both the domain-driven and data-
driven approaches was achieved for ECE (0.62 and 0.69
respectively) than ICE (0.54 and 0.65 respectively). This
shows that absolute band power readings at Muse’s electrode
sites are more effective in distinguishing intentional mental
concentration than induced vigilance. Our assumption that
reaction time of the user can be used as a surrogate measure
of active concentration might be unfounded too. In other
research involving PVT, the level of vigilance is identified



Fig. 7: Photo from non-cue-based experiment

using EEG activity measured using electrodes densely located
at the posterior regions of the scalp [21], [22], or additional
features such as raw frequency readings and variance [18].
This indicates that it may not be sufficient to solely use EEG
band power reading from the limited electrodes in the Muse
headset.

3) Comparison between headsets: Referring to Figure 6,
both Emotiv Insight and Muse have approximately the same
maximum cross-validation accuracy. However, the perfor-
mance of the different classifiers vary greatly between Emotiv
Insight and Muse. This difference is observed even when
between features obtained from the same region of the scalp
(such as AF3 and AF4 for Emotiv Insight, and AF7 and AF8
for Muse). This might be due to the differences in hardware
and signal acquisition methods of the headsets.

With regards to usability, Muse received more positive
feedback than Emotiv Insight headset. A higher level of
comfort was reported the Muse headset, as the headset has
an adjustable band which can cater to different head sizes.
Furthermore, the set-up time required for Muse is much shorter
than Emotiv Insight, for it is difficult to establish good contact
quality with the latter. The ergonomics of Muse is more
favourable, and contributes to better user experience.

For extensibility, the Emotiv community SDK has more
non-EEG data available than the Muse, such as electromyo-
graphy (EMG) and gyroscope data. With more input options
available to complement the EEG readings, there is greater
potential to build a hybrid BCI with Emotiv Insight. On
the other hand, raw EEG data and FFT readings are freely
available with the Muse, but not for the Emotiv community
SDK. Therefore, enhanced EEG feature extraction is only
possible with Muse, where we can access and process the
raw data manually.

IV. EVALUATION OF OVERALL BCI SYSTEM

In this section, we assess the performance of the overall
BCI system in terms of its efficacy and usability. Table III lists
the algorithm and parameters that lead to the highest cross-
validation accuracy and are used in the final system.

TABLE III: Parameters used in implemented BCI system

Approach Data Driven

Algorithm Support Vector Machine (SVM)

Parameters Kernel=RBF, C=0.25, gamma=0.1

Experiment Explicit Concentration Experiment

Headset Muse 2014

Features used Absolute α, β, γ, θ band powers from AF7, AF8

A. Experiment Design

Four experiments were conducted to achieve these aims: the
cue-based and non cue-based experiments, each repeated twice
with subject-independent and subject-dependent classifiers.

1) Cue-based Experiment: The aim of the cue-based exper-
iment is to measure the accuracy of the classifier given out-
of-sample data, without influence of the drone. It consists of
10 iterations. The outline of each iteration is shown in Figure
8.

Fig. 8: Overview of each iteration in cue-based experiment

• Inattention: The user is instructed to relax his mind.
• Concentration: The user is instructed to concentrate.
• Rest: The user is instructed to close his eyes and rest.

6 participants were recruited, and the classifiers were built
according to the data collected from them in the ECE. Each
subject is given 5 minutes prior to the experiment to prac-
tise with the classifier. The predicted concentration state is
displayed on the screen throughout the experiment.

2) Non-cue-based Experiment: The suitability of the sys-
tem for drone control is evaluated. Subjects who managed
to achieve an accuracy of more than 50% in the cue-based
experiments participated in the non cue-based experiment.
They are given the goal to make the drone fly for 5s, before
landing it onto the ground. This is done twice: with the user
looking at the feedback screen on the computer, and the other
with the user looking at the drone directly. Feedback about the
setup process and usability of subject-independent and subject-
independent classifiers was seeked for in the questionnaire.

3) Classifiers: The subject-independent classifier is a single
classifier built based on the combined data across all subjects,
and is used for all subjects. On the other hand, the subject-
dependent classifier is built for each individual based on his
or her own data.

B. Evaluation Criteria

1) Out of sample performance: We assess the performance
of the classifier in the data processing module given new
testing data through the cue-based experiment.

2) Comparison between classifiers: We compare if a gen-
eral subject-independent classifier or a personalised subject-
dependent classifier would have a better out-of-sample per-
formance. If the subject-independent classifier has a better



Fig. 9: Mean accuracy, sensitivity and specificity for cue-based
experiments

performance, it suggests that EEG activity across the users
share similar statistical patterns, so that a single classifier is
able to represent it with adequate accuracy. However, if EEG
activity is statistically unique for each user, we would expect
the subject-dependent classifier to perform better.

3) Usability: This is assessed through the non cue-based
experiments, via practical trials of controlling the drone in the
non cue-based experiment. A questionnaire is given so as to
get their feedback about their experience controlling the drone
and wearing the headset.

C. Results

The performance of the classifiers in the cue-based ex-
periments was evaluated using the accuracy, specificity and
sensitivity metrics.

1) Out of sample performance: Referring to Figure 9, mean
accuracy metrics for the subject-independent and subject-
dependent models are 0.74 and 0.77 respectively, showing
that the classfiers are able to perform reasonably well on out-
of-sample data. For both models, specificity was the highest,
followed by accuracy and finally sensitivity. This shows that
the models are able to predict inattention more precisely than
concentration. While a higher sensitivity would have been
ideal, it is more desirable to have poor sensitivity than poor
specificity for practical drone control, as false positives (that
comes with poor specificity) resulting in powerful, uncon-
trolled drone movement may cause injury to people. However,
the susceptibility to false negatives is still a limitation of the
system.

2) Comparision between classifiers: Referring to Figure
9, the mean improvement in accuracy and sensitivity in the
subject-dependent model was higher than the loss in specificity
for the subject-dependent model. This shows that the overall
performance of the subject-dependent model is better than the
subject-independent model. This seems to suggest that the
brain activity and method of explicit concentration may not
be universal among individuals. The general model may thus
be less able to capture the differences in the ways the subjects
concentrate, which indicates that having a personalised clas-

sifier for each subject may contribute to better control of the
drone.

However, individual performance varied, as not all subjects
had better accuracy with the subject-dependent classifier. This
shows that the subject-dependent classifier itself may not be an
accurate representation of the individual’s overall brain activity
across different attempts, since the data used to train the
model was only collected from one session for each individual.
The variation in accuracy might also be due to insufficient
representative features, for which further feature engineering
is required in order to investigate this discrepancy.

3) Usability: Favourable reviews were received for the
set-up process, highlighting the strengths of consumer-grade
EEG headsets in allowing for quick set-up and comfort in
using the headset. However, the subjects indicated that it was
taxing to alternate between concentration and relaxation when
controlling the drone. This was exacerbated when they were
looking at the drone directly, for the movement of the drone
acted as a distraction. The excitement and pressure that the
subjects felt while trying to control the drone also made it hard
to explicitly focus or relax, which affected both the accuracy
and the mental workload experienced by the subjects.

V. DISCUSSION

From Section III, we have determined that it would be
the most suitable to use the Muse headset with data-driven
approach in the BCI drone control system. In particular,
SVM had the best performance out of all the classifiers, with
the EEG band powers at AF7 and AF8 used as features.
However, through validating the classifier on a test set, and
user testing of the BCI system (Section IV), while the system
received positive reviews about the set-up process and comfort,
there were concerns about the high mental workload, and the
variance of performance across the subjects.

The difference in performance between the subjects high-
lights the weaknesses of having insufficient representative
data to train the classifier. In order to increase the accuracy
across different individuals, subject-dependent classifiers can
be created for each individual. An interactive machine learning
model [23] can be introduced to allow designers to train and
correct the errors of the classifier with new data across separate
sessions. In addition, an incremental and interactive training
process can be implemented for users to learn to produce
a consistent brain activity. This will also reduce the mental
workload of the user, by training them to the mechanism of
the system. Other input modalities can also be considered to
complement the BCI and allow for multi-parameter control.
For example, we can introduce an eye-tracker in the existing
system to build a hybrid BCI that allows people to move the
drone left or right using their gaze.

More research can be done to improve the accuracy of the
domain-driven approach. This can be done by utilising raw
EEG data, and constructing our own indices by considering
subsets of the frequency bands (e.g. alpha activity of a
lower frequency which is known to increase with inattention
[24]). Regression analysis can also be used to create more



complex index from the existing indices. Such indices may
be more representative of the EEG activity following active
concentration.

To investigate the observed differences between the head-
sets, the band powers derived by the headsets can be compared
with that obtained by independent control sensors. This will
also aid in determining which headset is more accurate in
distinguishing concentration from inattention. We can also
consider investigating other BCI platforms, such as OpenBCI.
OpenBCI has 8 electrodes that can be placed at any locations,
which allows us to explore other modalities (e.g. SSVEP), and
how they can be used for drone control.

VI. CONCLUSION AND FUTURE WORK

BCI has great potential in providing a hands-free method for
controlling a drone. Not only does it benefit the disabled as an
option to reach remote objects, it is also a novel approach for
recreational drone piloting. However, there is a need to balance
between the accuracy and the usability (cost, set-up process,
training) of the system. Using a consumer-grade EEG headset,
we designed and implemented a BCI system for 1-dimensional
drone control based on the user’s concentration. Reviews of the
usability were generally favourable, highlighting the strengths
of consumer-grade EEG headsets in ease of use.

However, the actual efficacy of the system varied between
the subjects, which shows the weaknesses of having insuf-
ficient representative data to train the classifier. Although
this study has highlighted the potential of using consumer-
grade EEG headsets for drone control, it would be fruitful
to compare the consumer-grade EEG headsets with indepen-
dent control sensors in order to accurately evaluate its EEG
acquisition ability. To improve the usability of the system
across all individuals, we can also look into implementing an
iterative training process and evaluate other input modalities
to complement the existing system.
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